한국농림기상학회지, 제 10권 제2호(2008) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 10, No. 2, (2008), pp. 35~46
DOI: 10.5532/KJAFM.2008.10.2.035
ⓒ Author(s) 2014. CC Attribution 3.0 License.


전이함수를 통한 광릉 산림 유역의 토양수분 모델링

최경문(1), 김상현(1), 손미나(1), 김 준(2)
(1)부산대학교 환경공학과, (2)연세대학교 대기과학과

(2008년 05월 06일 접수; 2008년 06월 12일 수정; 2008년 06월 25일 수락)

Soil Moisture Modelling at the Topsoil of a Hillslope in the
Gwangneung National Arboretum Using a Transfer Function

Kyung-Moon Choi(1), Sang-Hyun Kim(1), Mina Son(1)
(1)Department of Environmental Engineering, Pusan National University
(2)Department of Atmospheric Sciences, Yonsei University

(Received May 06, 2008; Revised June 12, 2008; Accepted June 25, 2008)

ABSTRACT
Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Keyword: Soil moisture, Time domain reflectometry, Time series, Transfer function model

MAIN

적요

토양수분은 사면에서의 수문학적 과정의 가장 중요한 요소이며, 불포화대에서의 흐름을 결정하는 중요요소이다. 본 연구는 전이함수모형을 이용하여 토양수분의 시간적 공간적 분포 양상을 인지하고자 한다. 이를 위하여, 광릉 수목원 슈퍼사이트 원두부 소유역 내에서 TDR을 이용하여 2시간 간격으로 연속 측정한 10cm 깊이의 토양수분 결과를 전이함수를 통하여 분석하였다. 강우 자료를 입력변수로, 지표면으로부터 10cm 깊이의 실측 토양수분 자료를 출력변수로 선정하여 단일 입출력 전이함수를 전개하였다. 토양수분의 계절적인 변화를 분석하기 위해 5월과 9월의 전이함수를 비교하였다. 시계열 전이 함수는 크게 자료의 전처리, 모형구조의 규명, 후보 모형군의 구성, 모수추정, 모형진단 등의 과정을 통해서 전개되며 10cm 깊이의 토양수분과 강우의 상관관계를 보여준다. 도출한 전이함수 시계열 모형에서 10cm 깊이의 토양수분은 강우에 의한 영향이 지배적이었으며, 지점별 경사에 따라 토양수분의 변동성이 크게 차이를 나타내지 않았다. 이는 10cm 깊이의 토양수분 변동량은 각 지점의 경사보다 강우에 의한 반응이 우세하다는 것을 시사한다. 계절별로 상이한 모의 결과는 식생의 활동이 활발한 5월에는 식생이 토양수분 이동에 많은 영향을 미치며 식생이 토양수분을 해석하는데 중요한 변수로 작용함을 나타낸다. 본 연구 결과는 광릉 산림과 같은 복잡 경관에서 토양수분의 분포를 이해하는 기반자료가 될 것으로 기대된다.

REFERENCES

Box, G. E. P., and D. R. Cox., 1964: An analysis of transformations. Journal of the Royal Statistical Society Series B(Methodological) 26(2), 211-243

Box, G. E. P., and G. M. Jenkins, 1976: Time Series Analysis: Forecasting and Control, (Revised ed.). Prentice Hall, Englewood Cliffs, New Jersey

Box, G. E. P., and G. M. Ljung, 1978: On a measure of lack of fit in time series models. Biometrika 65, 297crossref(new window)

Bras, R. L., and I. Rodriguez-Iturbe, 1985: Random Functions and Hydrology. Addison-Wesley, Reading, Mass

Chow, V. T., and V. C. Kulandaiswamy, 1982: The IUH of general hydrologic system model. Journal of Hydraulic Engineering 108(7), 830-844

Chow, V. T., D. R. Maidment, and L. W. Mays, 1998: Applied Hydrology. McGraw-Hill Inc., 201-213

Fitzgerald, M. G., and M. R. Karlinger, 1983: Water and sediment discharges from selected rivers of the eastern United States: A time-series modeling approach. U.S. Geological Survey Water Supply Paper 2216, 24

Grayson, R. B., A. W. Western, and F. S. Chiew 1997: Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resources Research 33(12), 2897-2908crossref(new window)

Gurnell, A. M., and C. R. Fenn, 1984: Box-Jenkins transfer function models applied to suspended sediment concentration-discharge relationships in a proglacial stream, Arctic and Alpine Research 16(1), 93-106crossref(new window)

Hipel, K. W., A. I. McLeod, and W. C. Lennox, 1977: Advances in Box-Jenkins modeling: 1. Model construction. Water Resources Research 13(3), 567-575crossref(new window)

Jung, D. B., and T.Y Won, 2001: The Simplified Analysis of Time Series Vol. (1) SPSS Academy, 24-72 pp

Kim, S. H., and J. W. Delleur, 2001: Stochastic structure between quantity and quality responses of rainfall-runoff at an upland agriculture watershed. Water Science and Technology 44(7), 91-104

Kwak, Y. S., 2008: Spatiol distribution of macropore flow percentage and macroporosities in the Gwangneung forest catchment. Master thesis of Department of Environmental Engineering of Pusan National University, 40-52 pp. (Korean with English abstract)

La Barbera, P., R. Rosso, and J. D. Salas, 1985: Multivariate dynamic modelling of daily sediment yield in rivers, in multivariate analysis of hydrologic processes, Proceedings of Fourth International Hydrology Symposium. Engineering Research Center, Colorado State University, Fort Collins, 1035-1056

Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe, 2002: On the seasonal dynamics of mean soil moisture. Journal of Geophysical Research 107(D15), doi:10.1029/2001JD001252

Lemke, K. A. 1991: Transfer function models of suspended sediment concentration. Water Resources Research 27(3), 293-305crossref(new window)

Liu, L. M., and D. M. Hanssens, 1982: Identification of multiple input transfer function models. Communications in Statistics-Theory and Methods 11(3), 297-314crossref(new window)

Liu, L. M., and G. B. Hundak, 1992: Forecasting and Time Series Analysis Using the SCA Statistical System. Scientific Computing Associates Corp., 8.1-8.84 pp

Lui, L. M. 2006: Time Series Analysis and Forecasting (2nd ed.). Scientific Computing Associates Corp., 5.1-5.19 pp

O’Callaghan, J. F., and D. M. Mark, 1984: The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image processing 28, 323-344crossref(new window)

Quinn, P. F., K. J. Beven, and R. Lamb, 1995: The ln (a/tan $\beta$) index, How to calculate it and how to use it within the TOPMODEL framework. Hydrological Processes 9, 161-182crossref(new window)

Rodriguez-Iturbe, I., and A. Porporato, 2004: Ecohydrology of Water-Controlled Ecosystems; Soil Moisture and Plant Dynamics, Cambridge University Press, 11-12, 245-246 pp

Salas, J. D., J. W. Delleur, V. Yevjevich, and W. L. Lane, 1988: Applied Modeling of Hydrologic Time Series, Water Resource Publication

Sharma, T. C., and W. T. Dickinson, 1980: System model of daily sediment yield. Water Resources Research 16(3), 501-506crossref(new window)

Sharma, T. C., W. G. S. Hines, and W. T. Dickinson, 1979: Input-output model for runoff sediment yield processes. Journal of Hydrology 40(3-4), 299-322crossref(new window)

Walker, J. P., G. R. Willgoose, and J. D. Kalma, 2004: In situ measurement of soil moisture: A comparison of techniques. Journal of Hydrology 293, 85-99crossref(new window)

Wilson, D. J., A. W. Western, and R. B. Grayson, 2005: A terrain and data-based method for generating the spatial distribution of soil moisture. Advances in Water Resources 28, 43-54crossref(new window)

Zhang and Berndtsson 1991: Analysis of soil water dynamics in time and space by use of pattern recognition, Water Resources Research 27(7), 1623-1636crossref(new window)