한국농림기상학회지, 제 10권 제1호(2008) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 10, No. 1, (2008), pp. 17~24
DOI: 10.5532/KJAFM.2008.10.1.017
ⓒ Author(s) 2014. CC Attribution 3.0 License.


Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의
비이산화탄소 온실가스 배출량 추정

원명수(1), 구교상(1), 이명보(1), 손영모(2)
(1)국립산림과학원/산불연구과, (2)국립산림과학원/산림평가과

(2008년 02월 12일 접수; 2008년 03월 14일 수락)

Estimation of non-CO2 Greenhouse Gases Emissions from
Biomass Burning in the Samcheok Large-Fire Area
Using Landsat TM Imagery

Myoung Soo Won(1), Kyo Sang Koo(1), Myung Bo Lee(1) and Yeong Mo Son(2)
(1)Division of Forest Fire, Korea Forest Research Institute
(2)Division of Forest Sink and Forest Land Use, Korea Forest Research Institute,
Cheongyangri-2 dong, Dongdaemun-gu, Seoul 130-712, Korea

(Received February 12, 2008; Accepted March 14, 2008)

ABSTRACT
This study was performed to estimate non-CO2 greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-CO2 GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-CO2 GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-CO2 GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-CO2 GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of NOxO (0.238Gg), and 0.1% of N2O (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-CO2 GHGs with the degree of the burn severity. The maximum emission of non-CO2 GHGs occurred in moderate burn severity, indicating 47% of the total emission.

Keyword: Forest fire, Biomass burning, Non-CO2 GHGs, Normalized burn ratio, Combustion efficiency, Emission factor, Landsat TM

MAIN

적요

지구온난화 문제는 국지적, 국내적 환경문제가 아닌 범지구적 차원에서 해결하여야 할 문제로 온실가스 규제와 지구환경의 조화를 위한 국제적 노력이 요구된다. 따라서 본 연구에서는 바이오매스 연소시 배출되는 비이산화탄소의 배출량을 정량적으로 추정하기 위한 방법론을 제시하고자 하였고, 산불피해지 구분은 물론 피해강도에 따라 배출되는 비이산화탄소 온실가스를 정량적으로 추정하기 위해 위성영상 자료를 활용하였으며, IPCC 기준인 Tier 2 수준으로 비이산화탄소 온실가스 배출량을 추정하였다.
본 연구에서는 2000년 4월에 발생한 우리나라 최대 산불인 삼척피해지를 대상으로 산불 전후 동일시기에 관측된 Landsat 위성영상으로부터 정규탄화지수(NBR)를 추출하여 산불피해지역과 피해강도를 정량적으로 분석하였다. 위성영상에서 추출된 피해면적과 피해강도별 분석자료는 바이오매스 연소로 인해 직접 배출되는 비이산화탄소 배출량 추정을 위한 활동자료로 활용하였다. 비이산화탄소 배출량 추정을 위해 IPCC의 추정식을 이용하였다. 산불피해강도별 연소효율은 피해강도가‘심’(burn severity: high)인 수관화 지역의 경우 0.43, 피해강도 ‘중’(burn severity: moderate) 0.40, 그리고 피해강도가 ‘경’인 지표화지(burn severity: low)의 경우는 0.15를 적용하였다. 바이오매스 연소시 배출되는 비이산화탄소 온실가스별 배출계수는 CO 130, CH4 9, NOx 0.7, N2O 0.11 값을 적용하였다. 삼척 산불피해지의 dNBR에 의한 피해강도 분석 결과, 전체 피해면적은 16,200ha로 나타났으며, 피해강도는 ‘경(Low:dNBR 152 이하)’ 35%, ‘중(Moderate: dNBR 153-190)’ 33%, ‘심(High: dNBR 191-255)’ 32%의 면적분포를 보였다. 임상별 피해면적은 침엽수림 11,506ha(77%), 활엽수림 453ha(3%) 그리고 혼효림에서 2,978ha(20%)의 피해를 입은 것으로 평가되었다. 삼척 산불피해지의 바이오매스 연소로 인해 직접 배출된 비이산화탄소 배출량 추정 결과, CO 93%, CH4 6.4%, NOx 0.5%, N2O 0.1%의 순으로 배출량이 많았다. 삼척 산불피해지의 강도별 피해면적은 32%~35%의 분포로 고른 양상을 보이고 있지만 피해강도 ‘중’ 지역에서 배출된 비이산화탄소의 양이 전체의 47%를 차지하여 배출율이 가장 높은 것으로 나타났다. 삼척산불 피해지의 총 비이산화탄소 온실가스 배출량은 CO 44.100Gg, CH4 3.053Gg, NOx 0.238Gg 그리고 N2O는 0.038Gg이 배출된 것으로 추정되었다.

REFERENCES

Cocke, A. E., P. Z. Fule, and J. E. Crouse, 2005: Comparison of burn severity assessments using differenced normalized burn ratio and ground data. International Journal of Wildland Fire 14(2), 189-198crossref(new window)

Crutzen, P. J., and M. O. Andreae, 1990: Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988), 1669-1678crossref(new window)

Delmas, R., J. P. Lacaux, and D. Brocard, 1995: Determination of Biomass Burning Emission factors: Methods and Results. Environmental Monitoring and Assessment 38, Kluwer Academic Publishers, 181-204crossref(new window)

IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios

IPCC, 2003: Good Practice Guidance for Land Use, Land-Use Change and Forestry, National Greenhouse Gas Inventories Programme, the Institute for Global Environmental Strategies (IGES) for the IPCC

Jensen, J. R., 2000: Remote Sensing of the Environment: An Earth Resources Perspective, Prentice Hall, 204pp

Key, C. H., and N. C. Benson, 2002: Measuring and remote sensing of burn severity. US Geological Survey Wildland Fire Workshop, 31 October to 3 November 2000, Los Alamos, NM. USGS Open-File Report 02-11

Kauffman, J. B., D. L. Cummings, D. E. Ward, and R. Babbitt, 1995: Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104(4), 397-408

Key, C. H., and N. C. Benson, 2006: Landscape assessment: sampling and analysis methods. USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. Ogden, UT

Korea Forest Service, 2005: Statistical yearbook of forestry 2005(35), 38-39. (in Korean)

Korea Forest Service, 2006: Forest fire statistics: 2006 annual report, 26-27. (in Korean)

Lentile, L. B., Z. A. Holden, A. M. S. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson, 2006: Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15(3), 319-345crossref(new window)

Roy, D. P., L. Boschetti, and S. N. Trigg, 2006: Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters 3(1), 112-116crossref(new window)

Son, Y. M., J. C. Kim, K. H. Lee, and R. H. Kim, 2007: Forest biomass assessment in Korea. Korea Forest Research Institute, Research Paper 07-22. (in Korean)

van Wagtendonk, J. W., R. R. Root, and C. H. Key, 2004: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment 92(3), 397-408crossref(new window)

Ward, D. E., 1990: Factors influencing the emissions of gases and particulate matter from biomass burning. Fire in the Tropical Biota, J. G. Goldammer (Eds,), Springer, 418-436

Won, M. S., K. S. Koo, and M. B. Lee, 2006: An analysis of forest fire occurrence hazards by changing temperature and humidity of ten-day intervals for 30 years in spring. Korean Journal of Agricultural and Forest Meteorology 8(4), 250-259. (in Korean with English abstract)

Won, M. S., K. S. Koo, and M. B. Lee, 2007: A quantitative analysis of severity classification and burn severity for the large forest fire areas using normalized burn ratio of landsat imagery. The Korean Association of Geographic Information Studies 10(3), 80-92. (in Korean with English abstract)