한국농림기상학회지, 제 11권 제2호(2009) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2, (2009), pp. 72~78
DOI: 10.5532/KJAFM.2009.11.2.072
ⓒ Author(s) 2014. CC Attribution 3.0 License.


복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법

정유란(1), 윤경담(2), 조경숙(3), 이재현(1), 윤진일(1)
(1)경희대학교 생태시스템공학과,
(2)한국과학기술연구원 영상미디어연구센터, (3)기상청 기후정책과

(2009년 06월 02일 접수; 2009년 06월 15일 수정; 2009년 06월 22일 수락)

The PRISM-based Rainfall Mapping at an Enhanced Grid
Cell Resolution in Complex Terrain

Uran Chung(1), Kyungdahm Yun(2), Kyung-Sook Cho(3), JaeHyun Yi, Jin I. Yun(1)
(1)Department of Ecosystem Engineering, Kyung Hee University
(2)Image Research Center Korea Institute of Science and Technology
(3)Climate Policy Division, Korea Meteorological Administration

(Received June 02, 2009; Revised June 15, 2009; Accepted June 22, 2009)

ABSTRACT
The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a 5×5km grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

Keyword: PRISM, Areal precipitation, Topography, Orographic effect, Rain shadow

MAIN

적요

관측밀도가 동일한 조건에서 단위격자점의 크기를 줄일 경우 PRISM 방식에 의해 추정된 강수량 분포가 단위격자점의 크기를 줄이기 전에 비해 개선되는지 확인하기 위해 PRISM 코드를 수정하여 270m×270m 격자점 단위로 구동할 수 있도록 하였다. 남한 전역의 지형자료를 270m DEM으로부터 준비하고 432개 기상청 자동기상관측소의 2007년 월별 적산강수량 자료를 입력자료로 하여 각 격자점의 PRISM 회귀식을 도출하였다. 회귀모형과 DEM 고도에 의해 각 격자점의 월별 적산강수량을 추정한 다음, 추정된 강수량분포도로부터 한국수자원공사 우량관측소 166개소에 해당하는 격자점의 자료를 추출하여 해당관측소의 실측 값과 비교하였다. 동일한 강수자료를 이용하되 이번에는 5km 격자점의 PRISM 회귀모형을 유도하여 강수량 분포도를 작성하고 166개 지점 추정강수량을 추출하여 실측자료와의 차이를 RMSE로 표현하였다. 5km대신 270m 분해능의 DEM을 사용할 경우 월 강수량이 100mm 이상인 경우 평균 10%의 오차 감소효과가 확인되었다.

REFERENCES

Chung, U., J. E. Jung, H. C. Seo, and J. I. Yun, 2009: Using urban effect corrected temperature data and a tree phenology model to project geographical shift of cherry flowering date in South Korea. Climatic Change 93, 447-463crossref(new window)

Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statisticaltopographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33,140-158

Johnson, G. L., P. A. Pasteries, G. H. Taylor, and C. Daly, 1999: Spatial climate products – a new dimension for climate applications. Preprints, 11th Conference on Applied Climatology, Dallas, Texas, American Meteorological Society, 107-113

Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225crossref(new window)

Phillips, D. L., J. Dolph, and D. Marks, 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology 58, 119-141crossref(new window)

Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48, 379-383

Shin, S. C., M. G. Kim, M. S. Suh, D. K. Rha, D. H. Jang, C. S. Kim, W. S. Lee, and Y. H, Kim, 2008: Estimation of high resolution gridded precipitation using GIS and PRISM. Atmosphere 18, 71-81. (In Korean with English abstract)

Thiessen, A. H., 1911: Precipitation averages for large areas. Monthly Weather Review 39, 1082-1084