한국농림기상학회지, 제 11권 제2호(2009) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2, (2009), pp. 52~60
DOI: 10.5532/KJAFM.2009.11.2.052
ⓒ Author(s) 2014. CC Attribution 3.0 License.


사과 과수원에서의 토양 CO2 발생량 평가

이재만(1), 김승희(2), 박희승(1), 서형호(3), 윤석규(2)
(1)중앙대학교 식물응용과학과, (2)국립원예특작과학원 과수과,
(3)국립원예특작과학원 온난화농업대응연구센터

(2009년 04월 02일 접수; 2009년 06월 03일 수정; 2009년 06월 22일 수락)

Estimation of Soil CO2 Efflux from an Apple Orchard

Jae-Man Lee(1), Seung-Heui Kim(2), Hee-Seung Park(1), Hyeong-Ho Seo(3)
(1)Department of Applied Plant Science, Chung Ang University, Anseong 456-756, Korea
(2)Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA, Suwon 441-706, Korea
(3)Agricultural Research Center for Climate Change, National Institute of
Horticultural & Herbal Science, RDA, Suwon 441-706, Korea

(Received April 02, 2009; Revised June 03, 2009; Accepted June 22, 2009)

ABSTRACT
This study was conducted to quantify the soil respiratory CO2 emission (SR) in an apple orchard and to determine its relationship with key environmental factors such as air temperature, soil temperature and soil moisture content. Experiment was made over the period from 23 April 2007 to 31 March 2008 in ‘Fuji’ apple orchard of National Institute of Horticultural and Herbal Science in Suwon, Gyeonggi-do, Korea. The SR was measured by using the automatic opening/closing chamber system based on a closed method. Diurnal variations in SR showed an increase around 0700 hours with increasing soil temperature, its peak between 1400 and 1500 hours, and then a gradual decrease thereafter. Daily variations in SR depended largely on soil and air temperatures over the year, ranging from 0.8 to 13.7 g CO2 m-2d-1. During the rainy spell in summer (July~Autumn) with higher temperature and more precipitation, the SR was lower than that in the spring (May~June) with moderate temperature. The SR showed a significant exponential relationship with soil temperature (r2=0.800) and air temperature (r2=0.805), but not with soil moisture content (r2=0.160). The Q10 values of SR with annual soil temperature and air temperature were 2.0 and 1.9, respectively. The annually integrated SR was 19.6 ton CO2 ha-1.

Keyword: Soil emission, Soil temperature, Apple orchard, AOCC(Automatic Opening Closing Chamber)

MAIN

적요

본 실험은 사과원 토양으로부터의 CO2방출량을 정량적으로 파악하고, 토양호흡과 환경인자와의 관계를 알아보기 위해 수행되었다, 실험은 경기도 수원 국립원예특작과학원 내의 사과 ‘후지’ 과수원에서 2007년 4월 23일~2008년 3월 31일까지 실시하였다. 자체 제작한 자동 토양호흡 측정장치(밀폐법)를 이용하여 밀폐법에 근거하여 사과원의 토양 호흡을 지속적으로 측정하였다. 토양 호흡속도의 일변화는 일출 이후의 온도상승과 함께 아침 7시경부터 증가하여, 온도가 가장 높은 14~15시경에 최대값(399.4~450.9mg CO2 m−2h−1)을 나타내었으며 이후 온도의 하강과 함께 감소하였다. 토양 호흡속도는 0.82~13.65g CO2 m−2 d−1 범위의 계절변화를 보였고, 온도가 높고 강우가 많았던 7~9월에는 비교적 온도가 낮았던 5~6월보다 토양호흡속도가 낮았다. 토양호흡속도는 지온(r2=0.800) 및 기온(r2=0.805)과 유의한 지수함수적 관계를 보였다. 지온과 기온에 대한 토양호흡속도의 Q10 값은 각각 2.0과 1.9이었으며, 연간 총 토양 호흡량은 19.6ton CO2 ha−1 이었다.

REFERENCES

Adachi, M., Y. S. Bekku, W. Rashidah, T. Okuda, and H. Koizumi, 2006: Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology 34, 258-265crossref(new window)

Boone, R. D., K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye, 1998: Root exerts a strong influence on the temperature sensitivity of soil respiration. Nature 396, 570-572crossref(new window)

Bowden, R. D., K. M. Newkirk, and G. Rullo, 1998: Carbon dioxide and methane fluxes by a forest soil under laboratorycontrolled moisture and temperature conditions. Soil biology and Biochemistry 30, 1591-1597crossref(new window)

Buchmann, N., 2000: Biotic and abiotic factors controling soil respiration rates in Picea abiesstands. Soil Biology and Biochemistry 32, 1625-1635crossref(new window)

Bunnell, F. L., D. E. N. Tait, and K. Van Cleve, 1977: Microbial respiration and substrate weight loss, 1. A general model of the influences of abiotic variables. Soil Biology and Biochemistry 9, 3-40

Buyanovsky, G. A., G. H. Wagner, and C. J. Grantzer, 1986: Soil respiration in a winter wheat ecosystem. Soil science society of America Journal 50, 338-344

Buyanowsky, G. A., and G. H. Wagner, 1983: Annual cycles of carbon dioxide level in soil air. Soil science society of America Journal 47, 1139-1145

Davidson, E. A., E. Belk, and R. D. Boone, 1998: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biology 4, 217-227crossref(new window)

Dong, Y., D. Scharffe, J. M. Lobert, P. J. Crutzen, and E. Sanhueza, 1998: Fluxes of CO2, Ch4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus 50B, 243-252

Fang, C., J. B. Moncrieff, H. L. Gholz, and K. L. Clark, 1998: Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205, 135-146crossref(new window)

Gough, C. M., and J. R. Siler, 2004: The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management 191(5), 353-363

Hongxing, Z., W. Xiaoke, F. Zongwei, S. Wenzhi, L. Wenzhao, and O. Zhiyun, 2007: Multichannel automated chamber system for continuous monitoring of CO2 exchange between the agro-ecosystem or soil and the atmosphere. Acta Ecologica Sinica 27(4), 1273-1282crossref(new window)

Jassal, R. S., and T. A. Black, 2006: Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: Theory and practice. Agricultural and forest meteorology 140, 193-202crossref(new window)

Kim, J. S., 1996: Biomass and distribution of nitrogen and phosphorus for Pinus rigida , Larix leptolepis, and Quercus serrata stands in Yangpyeong Area. Ph.D. Thesis Korea University

Knapp, A. K., S.L. Conard, and J. M. Blair, 1998: Determination of soil CO2 flux from a subhumid grassland: Effects of fire and fire history. Ecological application 4, 760-770

Kosugi, Y., H. Tanaka, S. Takanashi, N. Matsuo, N. Ohte, S. Shibata, and M. Tani, 2005: Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 132, 329-343crossref(new window)

Kurganova, I., V. Lopes de gerenyu, L. Rozanova, D. Sapronov, T. Myakshina, and V. Kudeyarov, 2003: Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus 55B, 338-344

Lee, J. H., 2008: Effect of carbonization of agricultural product on increasing of carbon sequestration in red pepper soil. Master Thesis. Konkuk University

Lee, Y. Y., and H. T. Moon, 2001: A study on the soil respiration in a Quercus acutissima forest. Journal of Ecology and Field Biology 24(3), 141-147

Lessard, R., P. Rochette, E. Topp, E. Pattey, R. L. Deshardins, and G. Beaumont, 1994: Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Canadian Journal of Soil Science 74, 139-146

Linn, D. M., and J. W. Doran, 1984: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Science Society of America Journal 48, 1267-1272

Lloyd, J., and J. A. Taylor, 1994: On the temperature dependence of soil respiration. Functional Ecology 8, 315-323crossref(new window)

Londo, A. J., M. G. Messina, and S. H. Schoenholtz, 1999: Forest harvesting effects on soil temperate, moisture and respiration in a bottomland hardwood forest. Soil science society of America Journal 63, 637-644

Martin, J. G., and P. V. Bolstad, 2005: Annual soil respiration in broadleaf forests of northern Wiscons influence of moisture site biological chemical physical characteristics. Biogeochemistry 73, 149-182crossref(new window)

Mc Hale, P. J., M. J. Mitchell, and F. P. Bowles, 1998: Soil warming in a northern hardwood forest; trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research 28, 1365-1372crossref(new window)

Min, Y. K., 2006: Characteristics on the soil carbon flux in the cool-temperate deciduous forest at Gwangneung. Master Thesis. Konkuk University

Mitani, T., Y. Kosugi, K. Osaka, S. Ohkubo, S. Takanashi, and M. Tani, 2007: Spatial and temporal variability of soil respiration rate at a small watershed revegetated with Japanese cypress. Journal of the Japanese Forest Society 88, 496-507crossref(new window)

Moon, H. S., 2004: Soil respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in Jinju, Gyeongnam province. Journal of Ecology and Field Biology 7(1), 57-65

Nakayama, F. S., 1990: Soil respiration. Remote Sensing Reviews 5(1), 311-321

Nishimura, S., S. Sudo, H. Akiyama, S. Yonemura, K. Yagi, and H. Tsuruta, 2005: Development of a system for simultaneous and continuous measurement of carbon dioxide, methane and nitrous oxide fluxes from croplands based on the automated closed chamber method. Soil Science and Plant Nutrition 51(4), 557-564crossref(new window)

Ohashi, M., K. Gykusen, and A. Daito, 1999: Measurement of carbon dioxide evolution from a Japanse cedar (Cryptomeria japonica D. Don) forest floor using an openflow chamber method. Forest Ecology and Management 123, 105-114crossref(new window)

Raich, J. W., and K. J. Nadelhoffer, 1989: Belowground carbon allocation in forest ecosystem : Global trends. Ecology 70, 1346-1354crossref(new window)

Raich, J. W., and W. H. Schlesinger, 1992: The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81-99

Rastogi, M., S. Singh, and H. Pathak, 2002: Emission of carbon dioxide from soil. Current science 82, 510-517

Rochette, P., R. L. Deshardins, E. G. Gregorhch, E. Patty, and R. Lessard, 1992: Soil respiration in barely (Hordeum vulgare L.) and fallow fields. Canadian Journal of Soil Science 72, 591-603

Shi, P. L., X. Z. Zhang, Z. M. Zhong, and H. Ouyang, 2006: Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agricultural and Forest Meteorology 137, 220-233crossref(new window)

Son, Y. H., and H. W. Kim, 1996: Soil respiration in Pinus rigida and Larix leptolepis plantation. Journal of Korean Forestry Society 85, 496-505

Tufekcioglu, A., J. W. Raich, T. M. Isenhart, and R. C. Schultz, 2001: Soil respiration within riparian buffer and adjacent crop fields. Plant and Soil 229, 117-124crossref(new window)

Yi, M. J. 2003: Soil CO2 evolution in Quercus variabilis and Q. mongolica forests in Chunchon, Kangwon provice. Journal of Korean Forestry Society 92(3), 236-269