한국농림기상학회지, 제 11권 제1호(2009) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, (2009), pp. 3~12
DOI: 10.5532/KJAFM.2009.11.1.003
ⓒ Author(s) 2014. CC Attribution 3.0 License.

표준화 지수를 이용한 환경수목의 오존 내성 결정

한심희(1), 김두현(1)
(1)국립산림과학원 산림유전자원부

(2009년 03월 04일 접수; 2009년 03월 13일 수정; 2009년 03월 19일 수락)

Determination of Ozone Tolerance on Environmental
Tree Species Using Standard Index

Sim-Hee Han(1), Du-Hyun Kim(1)
(1)Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea

(Received March 04, 2009; Revised March 13, 2009; Accepted March 19, 2009)

Ozone tolerance of tree species was determined by standard index of physiological damages and biochemical defense responses under short-term ozone exposure. At the end of 150ppb O3 fumigation, photosynthetic characteristics and antioxidative enzyme activities were analyzed in the leaves of five species(Koelreuteria paniculata, Firmiana simplex, Styrax japonica, Fraxinus rhynchophylla, Viburnum sargentii). Injury index was determined by the effect of ozone on photosynthetic parameters and malondialdehyde(MDA) content, and tolerance index was calculated using the rate of increase in superoxide dismutase(SOD), ascorbate-peroxidase(APX), glutathione reductase(GR) and catalase(CAT) activities. Apparent quantum yield(AQY), carboxylation efficiency(Ce) and photo-respiration rate(PR) decreased in the leaves of five species with increasing ozone exposure time. These parameters were considered as an appropriate indicator for stress evaluation. Antioxidative enzyme activities showed various results depending on the tree species, exposure time, and enzyme types. SOD activity of K. paniculata increased with ozone exposure time, and that of F. rhynchophylla increased only after 6 hours of ozone exposure. CAT activity of O3-exposed F. simplex was lower than the control. Based on standard index, ozone tolerance ability of five species was determined as two tolerant species(F. rhynchophylla > K. paniculata) and three sensitive species(S. japonica > F. simplex > V. sargentii).

Keyword: Physiological damage, Antioxidative enzyme, Photosynthetic parameters, Standard index



수목의 오존 내성을 단기 노출 후 나타난 생리적 피해와 생화학적 반응들의 표준화 지수로 결정하였다. 모감주나무, 벽오동, 때죽나무, 물푸레나무, 백당나무를 150ppb 오존 노출 시킨 후, 광합성 특성, MDA 함량 및 항산화효소의 활성을 측정하여 피해지수는 광합성 파라미터와 MDA 함량 변화를 이용하여 계산하였으며, 내성지수는 항산화효소의 활성 변화를 측정하여 산출하였다. 순양자수율, 탄소고정효율, 광호흡속도는 오존노출시간에 따라 감소하여, 스트레스 평가지표로 적당한 것으로 판단되었다. 항산화효소의 활성은 수종, 노출시간 및 효소 종류에 따라 다양한 결과를 보여 주었다. 모감주나무 SOD 활성은 오존 노출시간에 따라 증가하였고, 물푸레나무의 SOD 활성은 오존 노출 6시간 후에 증가하였으며, 벽오동의 CAT 활성은 무처리보다 낮았다. 표준화 지수를 기초로 한 5개 수목의 오존 내성은 두 내성 수종(물푸레나무>모감주나무)과세 민감성 수종(때죽나무>벽오동>백당나무)으로 구분되었다.


Asada, K., and M. Takahashi, 1987: Production and scavenging of active oxygen in photosynthesis. Photoinhibition: Topics in Photosynthesis IX, D. J. Kyle, C. B. Osmond, and C. J. Arntzen (Eds.), Elsevier, Amsterdam, 227-287

Bennet, J. H., E. H. Lee, and H. E. Heggestad, 1984: Biochemical aspect of plant. Gaseous Air Pollutants and Plant Metabolism, Koziol, M. J., and F. R. Whatley (Eds.), Butterworth England, 413-424

Bortier, K., K. Vandermeiren, L. D. Temmerman, and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15, 75-82crossref(new window)

Caemmerer, S. von, and G. D. Farquhar, 1981: Some relationships between the biochemistry of photosynthesis and the gas exchanges of leaves. Planta 153, 376-387crossref(new window)

Calatayud, A., J. W. Ramirez, D. J. Iglesias, and E. Barreno, 2002: Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum 116, 308-316crossref(new window)

Coleman, M. D., J. G. Isebrands, R. E. Dickson, and D. F. Kamosky, 1995: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592

Conklin, P. L., and C. Barth, 2004: Ascorbic acid, a familiar small molecule inter-wined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environment 27, 959-970crossref(new window)

Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90crossref(new window)

Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560

Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics and phytoremediation potential of 27 texa of roadside trees at industrial complex area. Korean Journal of Agricultural and Forest Meteorology 8, 159-168

Heath, R. L., 1980: Initial events in injury to plants by air pollutants. Annual Review of Plants Physiology 31, 395-431crossref(new window)

Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198crossref(new window)

Iglesias, J. D., Á. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citrus plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131

Janero, D. R., 1990: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 9, 515-40crossref(new window)

Kim, D. H., S. H. Han, K. Y. Lee, and P. G. Kim, 2008: Interactive effects of ozone and light intensity on Platanus occidentalis L. seedlings. Journal of Korean Forest Society 97, 508-515

Kim, P.-G., and E.-J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. (in Korean with English abstract)

Kolb, T. E., T. S. Fredericsen, K. C. Steiner, and J. M. Skel, 1997: Issues in scaling tree size and age responses to ozone: a review. Environmental Pollution 98, 195-208crossref(new window)

Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2006: Photosynthetic inhibition in leaves of Alianthus altissima under O3 fumigation. Journal of Ecology and Field Biology 29, 41-47crossref(new window)

Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2005: Changes on photosynthesis and SOD activity in Platanus orientalis and Liriodendron tulipifera according to ozone exposing period. Korean Journal of Agricultural and Forest Meteorology 7, 156-163 (in Korean with English abstract)

Lee, J. C., S. H. Han, C. S. Kim, and S. S. Jang, 2002: Visible foliar injuries and growth responses of four Betula sp. exposed to ozone. Korean Journal of Agricultural and Forest Meteorology 4, 29-37. (in Korean with English abstract)

Mehlhorn, H., J. M. O’Shea, and A. R. Wellburn, 1990: Electron spin resonance evidence for deformation of free radicals in plants exposed to ozone. Physiologia Plantarum 79, 377-383crossref(new window)

Ministry of Environment, 2008: Annual Report of Ambient Air Quality in Korea. 393pp

Nie G. Y., M. Tomasevic, and N. R. Baker. 1993: Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant, Cell and Environment 16, 643-651crossref(new window)

Noctor, G., and C. H. Foyer, 1998: Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279crossref(new window)

Oksanen, E., and M. Rousi, 2001: Differences of Betula origins in ozone sensitivity based on open-filed experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811

Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria, and L. Kärenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides × P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171-1181

$\ddot{O}$ncel, I., E. Yurdakulol, Y. Keles, L. Kurtm, and A. Yildiz, 2004: Role of antioxidant defence system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologia 26, 211-218crossref(new window)

P$\ddot{a}$$\ddot{a}$kkönen, E., J. Vahala, T. Holopainen, R. Karjalainen, and L. K$\ddot{a}$renlampi, 1996: Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch (Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology 16, 597-605

Paoletti, E., C. Nali, R. Marabottini, G. Della Rocca, G. Lorenzini, A. R. Paolacci, M. Ciaffi, and M. Badiani, 2003: Strategies of response to ozone in Mediterranean evergreen species. Establishing Ozone Critical Levels II. UNECE Workshop Report. IVL report B 1523, IVL, P.E. Karlsson, G. Séllden, and H. Pleijel (Eds.), Swedish Environmental Research Institute, G$\ddot{o}$teborg, Sweden, 336-343

Pell, E. J., C. D. Schlagnhaufer, and R. N. Arteca, 1997: Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum 100, 264-273crossref(new window)

Pell, E. J., N. A. Eckardt, and R. E. Glick, 1994: Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research 39, 453-462crossref(new window)

Pye, J. M., 1988: Impact of ozone on the growth and yield of trees: a review. Journal of Environmental Quality 17, 347-360crossref(new window)

Ranieri, A., G. D’Urso, C. Nali, G. Lorenzini, and G. F. Soldatini, 1996: Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiologia Plantarum 97, 381-387crossref(new window)

Ro, H. M., P. G. Kim, I. B. Lee, M. S. Yiem, and S. Y. Woo, 2001: Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15, 195-203crossref(new window)

Sheng, Y., G. K. Podila, and D. F. Karnosky, 1997: Differences in O3-induced superoxide dismutase and glutathione antioxidant expression in O3 tolerant and sensitive trembling aspen (Populus tremuloides Michx.) clones. Forest Genetics 4, 25-33

Yoshida, M., Y. Nouchi, and S. Toyama, 1994: Studies on the role of active oxygen in ozone in injury to plant cells. I. Generation of active oxygen in rice protoplast exposed to ozone. Plant Science 95, 197-205crossref(new window)