한국농림기상학회지, 제 12권 제3호(2010) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 3, (2010), pp. 183~196
DOI: 10.5532/KJAFM.2010.12.3.183
ⓒ Author(s) 2014. CC Attribution 3.0 License.

NCAR 지역기후모형의 인도 여름 몬순의 모사 성능

Gyan Prakash Singh(1), 오재호(2)
(1)Department of Geophysics, Banaras Hindu University, Varanasi-(2)(2)(1)(0)(0)(5), India

(2010년 05월 12일 접수; 2010년 09월 15일 수정; 2010년 09월 16일 수락)

Performance of NCAR Regional Climate Model in the
Simulation of Indian Summer Monsoon

(1)Department of Geophysics, Banaras Hindu University, Varanasi-221005, India
(2)Integrated Climate System Modeling Group, Department of Environmental Atmospheric Sciences,
Pukyong National University, 599-1 Daeyeon3-dong, Nam-gu, Busan 608-737, Korea

(Received May 12, 2010; Revised September 15, 2010; Accepted September 16, 2010)

Increasing human activity due to rapid economic growth and land use change alters the patterns of the Asian monsoon, which is key to crop yields in Asia. In this study, we tested the performance of regional climate model (RegCM3) by simulating important components of Indian summer monsoon, including land-ocean contrast, low level jet (LLJ), Tibetan high and upper level Easterly Jet. Three contrasting rain years (1994: excess year, 2001: normal year, 2002: deficient year) were selected and RegCM3 was integrated at 60 km horizontal resolution from April 1 to October 1 each year. The simulated fields of circulations and precipitation were validated against the observation from the NCEP/NCAR reanalysis products and Global Precipitation Climatology Centre (GPCC), respectively. The important results of RegCM3 simulations are (a) LLJ was slightly stronger and split into two branches during excess rain year over the Arabian Sea while there was no splitting during normal and deficient rain years, (b) huge anticyclone with single cell was noted during excess rain year while weak and broken into two cells in deficient rain year, (c) the simulated spatial distribution of precipitation was comparable to the corresponding observed precipitation of GPCC over large parts of India, and (d) the sensitivity experiment using NIMBUS-7 SMMR snow data indicated that precipitation was reduced mainly over the northeast and south Peninsular India with the introduction of 0.1 m of snow over the Tibetan region in April.

Keyword: Summer monsoon, Regional climate model, Low level jet, Precipitation, Tibetan snow



아시아 주요 곡물 생산지의 경제 성장과 지표 이용 변화에 따른 인간 활동의 증가는 아시아 몬순의 경향을 변화 시켰다. 본 연구에서는 지표-해양 대비, 하층제트 기류(LLJ), 티벳 고층 및 상층 편동풍 제트 기류를 포함한 인도 여름 몬순의 중요한 구성 요소를 모사하여 지역기후 모형 (RegCM3)의 성능을 평가하였다. 3년(1994: 다우 해, 2002: 평균 해, 2002: 가뭄 해)의 비교 자료를 선택하여 RegCM3은 매년 4월 1일부터 10월 1일까지 60 km의 해상도로 적분하였다. 순환과 강수 모사 결과는 NCEP/NCAR 재해석 자료와 Global Precipitation Climatology Centre(GPCC)의 관측 자료로 검증하였다. RegCM3 모형 모사의 중요 결과는 다음과 같다. (a) LLJ 는 다소 강하였으며 아라비아해에서 다우 해에 두 개로 분할되었으나, 평균 및 가뭄 해에서는 분할되지 않았다. (b) 단일의 대형 고기압이 다우 해에 존재하였으나, 가뭄 해에는 약하고 두 개의 고기압대로 분할되었다. (c) 강수의 공간분포모사는 대부분 인도 지역에서 GPCC의 관측 강수량과 유사하였다. (d) NIMBUS-7 SMMR 적설 자료를 이용한 민감도 실험에서 북동 및 남부 인도 반도 지역에서 주로 강수량의 감소가 나타났으며, 티벳 지역에서는 4월 적설량이 0.1m 감소하는 것으로 나타났다.


Annamalai, H., J. M. Slingo, K. R. Sperber, and K. Hodges, 1999: The mean evolution and variability of the Asian summer monsoon : Comparison of ECMWF and NCEP/ NCAR reanalysis. Monthly Weather Review 127, 1157-1186.

Barnet, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. Journal of the Atmospheric Sciences 46, 661-685.

Bhaskaran, B. R., G. Jones, J. M. Murphy, and M. Noguer, 1996: Simulations of the Indian summer monsoon using a nested regional climate model: Domain size Experiments. Climate Dynamics 12, 573-578.

Chattopadhyay, J., and R. Bhatla, 2002: Possible influence of QBO on teleconnection relating Indian summer rainfall and SST anomalies across the equatorial Pacific. International Journal of Climatology 22, 121-127.crossref(new window)

Cocke, S., and T.E. LaRow, 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Monthly Weather Review 128, 689-708.

Dash, S. K., M. S. Shekhar, and G. P. Singh, 2006: Simulation of Indian Summer monsoon Circulation and rainfall using RegCM3. Theoretical and Applied Climatology 86, 161-172crossref(new window)

Dickinson, R. E., R. M. Erico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United states. Climate Change 15, 383-422.

Fennessy, M. J., and J. Shukla, 2000: Seasonal prediction over North America with a regional model nested in a global model. Journal of Climate 13, 2605-2627.

Findlater, J., 1971: Mean monthly air flow at low levels over the western Indian Ocean. Geophysics Memoirs 16(115), 1-53.

Fucsh, T., U. Schneider, and B. Rudolf, 2007: Global Precipitation Analysis Product of the Global Precipitation Climate Center (GPCC). Deutscher Wetterdienst, Offenbach a.m. Germany, March 2007 (

Gadgil, S., J. Srinivasan, R. S. Nanjundiah, K. Krishna Kumar, A. A. Munot, and K. Rupa Kumar, 2002: On the forecasting the Indian summer monsoon: the intriguing season of 2002. Current Science 83, 394-403.

Gao, Xiaogang, S. Sorooshian, and H. V. Gupta, 1996: Sensitivity analysis of the biosphere-atmosphere transfer scheme. Journal of Geophysical Research 101, 7279-7289.crossref(new window)

Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Monthly Weather Review 117, 2325-2347.

Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second generation regional climate model (RegCM2) I, Boundary layer and radiative transfer processes. Monthly Weather Review 121, 2794-2813.

Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993b: Development of a second generation regional climate model (RegCM2) II, Convective processes and assimilation of lateral boundary conditions. Monthly Weather Review 121, 2814-2832.

Giorgi, F., C. Shields Brodeur, and G. T. Bates, 1994: Regional Climate Change scenarios over the United States produced with a nested regional climate model. Journal of Climate 7, 375-399.

Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: regional climate modeling revisited. Journal of Geophysical Research 104, 6335-6352.crossref(new window)

Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parametisations. Monthly Weather Review 121, 764-787.

Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Notes NCAR/TN-398+STR, 21pp.

Holtslag, A. A. M., E. I. Bruijin, and H. L. Pan, 1990: A high resolution air mass transformation model for short range weather forecasting. Monthly Weather Review 118, 1561-1575.

Hsie, E. Y., R. A. Anthes, and D. Kiyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. Journal of the Atmospheric Sciences 41, 2581-2594.

Joseph, P. V., and S. Sajikumar, 2004: Intraseasonal variability of the Low Level Jet stream of the Asian Summer monsoon. Journal of Climate 17(7), 1449-1458.

Kiehl, J., J. Hack, G. Bonan, B. Boville, B. Breigleb, D. Williamson, and P. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). Technical Report, National Center for Atmospheric Research.

Kripalani, R. H., A. Kulkarani, S. S. Sabade, J. V. Revadekar, S. K. Patwardhan, and J. R. Kulkarani, 2004: Intraseasonal oscillation during monsoon 2002 and 2003. Current cience 87, 325-331.

Kripalani, R. H., J. H Oh, A. Kulkarani, S. S. Sabade, and H. S. Chaudhary, 2007: South Asian summer monsoon precipitation variability:Coupled climate model simulations and projection under IPCC AR4. Theoretical and Applied Climatology 90, 133-159.crossref(new window)

Luo, H., and M. Yanai, 1983: The large scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part-I: Precipitation and kinemetic analysis. Monthly Weather Review 111, 922-944.

Lynn, Barry H., R. Healy, and L. M. Druyan, 2007: An Analysis of the Potential for Extreme Temperature Change Based on Observations and Model Simulations. Journal of climate 20, 1539-1554.crossref(new window)

Mitchell, K., M. J. fenessy, E. Rogers, J. Shukla, T. Black, J. Kinter, F. Mesinger, Z. Janjic, and E. Altshuler, 2001: Simulation of North American summer time climate with the NCEP ETA model nested in the COLA GCM.Global Energy and water Cycle Experiment (GEWEX) Newsletter 11, 3-6.

Murakami, M., 1979: Recursion technique for Band pass filter. Monthly Weather Review 107, 1011-1012.

Murakami, T., 1987: Orography and monsoons. Monsoons, Fein and Stephens (Eds), Wiley-Interscience, 331-364.

Nobre, P., A. D. Moura, and L. Sun, 2001: Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP’s regional spectral models at IRI. Bulletin of the American Meteorological Society 82, 2787-2796.

Ose, T., 1996: The comparision of the simulated response to the regional snow mass anomalies over Tibet, Eastern Europe and Siberia. Journal of the Meteorological Society of Japan 74, 845-866.

Pal, J., and S. E. Eltahir, 2000: Simulation of regional scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research 105, 29579-29594.crossref(new window)

Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1995: Monthly and seasonal rainfall series for All India homogenous regions and meteorological sub-divisions 1871-1994. IITM Research Report 65, Indian Institute of TropicalMeteorology, Pune India, 113pp.

Roads, J., S.-C. Chen, M. Kamamitsu, 2003a: U. S. regional climate simulations and seasonal forecasts. Journal of Geophysical Research 108, 8606, doi:10.1029/2002JD002232.crossref(new window)

Singh, G. P., J. H. Oh, and H. S. Chaudhary, 2005: Difference in large scale circulation characteristics between deficient and excess Indian summer monsoon rainfall year. Journal of the Korean Meteorological Society 41, 285-300.

Singh, G. P., and J. H. Oh, 2007: Impact of Indian Ocean sea surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. International Journal of Climatology 27, 1455-1465.crossref(new window)

Singh, N. N., and N. A. Sontakke, 1996: On the variability and prediction of rainfall in the post monsoon season over India. International Journal of Climatology 19, 309-339.

Vernekar, A. D., J. Zhou, and J. Shukla, 1995: The effect of Eurasian snow cover on the Indian monsoon. Journal of Climate 8, 248-266.

Walker, G. T., 1928: Correlation in seasonal variation of weather. Quarterly Journal of the Royal Meteorological Society 44, 223-224.

Wang, Y., L. R. Leung, J. L. McGREGOR, D. K. Lee, W. C. Wang, Y. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges and prospects. Journal of the Meteorological Society of Japan 82, 1599-1628.crossref(new window)

Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote response to excessive snow mass over Eurassia appearing in the northern spring and summer climate- a study of the MRI GCM. Journal of the Meteorological Society of Japan 69, 473-487.

Zwiers, F., 1993: Simulation of the Asian Summer monsoon with the CCC GCM-1. Journal of Climate 6, 470-486.