한국농림기상학회지, 제 12권 제3호(2010) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 3, (2010), pp. 173~182
DOI: 10.5532/KJAFM.2010.12.3.173
ⓒ Author(s) 2014. CC Attribution 3.0 License.

회화나무 8 가계간 오존 내성 차이에 대한 생리적 지표의 적합성

한심희, 김두현, 이재천
국립산림과학원 산림자원육성부

(2010년 07월 27일 접수; 2010년 09월 01일 수정; 2010년 09월 01일 수락)

Suitability of Physiological Indicators of Ozone Tolerance among
8 families of Sophora japonica

Sim-Hee Han, Du-Hyun Kim, Jae Cheon Lee
Department of Forest Resources Development, Korea Forest Research Institute, Suwon 441-350, Korea

(Received July 27, 2010; Revised September 01, 2010; Accepted September 01, 2010)

This study was conducted to investigate ozone sensitivity of physiological indicators and the difference in ozone tolerance of 8 families of Sophora japonica seedlings on the basis of the standardized physiological indicators. After ozone treatment, photosynthetic parameters, photosynthetic pigments and malondialdehyde (MDA) content, and antioxidative enzyme activities were analyzed from the leaves of S. japonica seedlings. Ozone tolerance indices among 8 families were calculated with the standardized physiological parameters. In addition, the reduction of carboxylation efficiency and apparent quantum yield were observed in the leaves of seven families, except for family No. 6 and 7, respectively. The apparent quantum yield varied from -27% to -61% of the control seedlings. Photosynthetic pigment content differed significantly among 8 families, but was not affected significantly by ozone treatment. Superoxide dismutase (SOD) activity increased from 7% to 64% after ozone exposure, and significant difference existed among 8 families. Ascorbate-peroxidase (APX) activity of 8 families increased by ozone treatment, and the activity of family No. 7 showed the highest increase (218%) in comparison to their respective control plants. On the basis of the standardized indices, family No. 6 showed the lowest tolerance by indicating higher reduction of both photosynthetic parameters and pigment content and lower increase of antioxidative enzyme activities. On the contrary, family No. 7 showed the highest tolerance as indicated by lower reduction of photosynthetic parameters, higher amounts of photosynthetic pigments, and higher enzyme activity.

Keyword: Physiological indicator, Ozone tolerance, Sophora japonica, Antioxidative enzyme, Photosynthetic parameter



본 연구는 오존에 노출된 회화나무 8 가계에서 측정한 생리적 지표들을 대상으로, 오존에 대한 민감성을 평가하고, 이 결과들을 종합하여 가계 간 차이를 구명하고자 실시하였다. 회화나무(Sophora japonica L.) 8가계를 대상으로 오존 처리 후, 광합성 특성, 엽록소 함량, 항산화효소 활성 및 MDA 함량을 측정하였고, 각 측정 지표들의 표준화 지수를 이용하여 내성 순위를 결정하였다. 탄소고정효율은 6번 가계를 제외한 모든 가계에서 오존 처리 후 뚜렷하게 감소하였으며, 탄소고정효율의 감소율은 -38%에서 -67% 범위를 보였다. 또한 순양자수율은 7번 가계를 제외한 모든 가계에서 오존 처리 후 뚜렷한 감소를 보였으며, 감소율은 -27%에서 -61%를 나타냈다. 엽록소 a를 비롯한 광색소 함량의 가계 간 차이는 컸으나, 오존 처리 효과는 나타나지 않았다. 오존 처리 후, SOD 활성의 증가율은 7%에서 64%로, 가계 간 차이가 뚜렷하였다.APX 활성은 모든 가계에서 오존 처리 후 증가하였으며, 7번 가계가 가장 큰 활성 증가율(218%)을 보였다. 표준화 지수를 기준으로 할 때, 6번 가계의 내성 수준이 가장 낮았으며, 7번 가계의 내성 수준이 가장 높았다. 6번 가계는 오존 처리 후 탄소고정효율을 비롯한 광합성 특성의 감소율과 광색소 함량의 감소율이 높게 나타난 반면, 내성을 나타내는 항산화효소의 활성 증가가 매우 적었다. 반대로 내성 수준이 높은 7번 가계는 오존 처리 후 광합성 특성의 감소율이 다른 가계에 비해 적었으며, 광색소 함량은 오히려 오존처리 후 증가하였고, 항산화효소의 증가율도 다른 가계에 비해 높게 나타났다.


Alonso, R., S. Elvira, F. J. Castillo, and B. S. Gimeno, 2001: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment 24, 905-916.crossref(new window)

Bennet, J. H., E. H. Lee, and E. H. Heggestad, 1984: Biochemical aspect of plant. Gaseous Air Pollutants and Plant Metabolism. Koziol, M.J. and Whatley, F.R. (ed.) Butterworth England. 413-424.

Bortier, K., K. Vandermeiren, L. D. Temmerman, and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15, 75-82.crossref(new window)

Coleman, M. D., R. E. Dickson, J. G. Isebrands, and D. F. Karnosky, 1995a: Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 593-604.

Coleman, M. D., J. G. Isebrands, R. E. Dickson, and D. F. Karnosky, 1995b: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592.

Cooper, O. R., D. D. Parrish, A. Stohl, M. Trainer, P. Nedelec, V. Thouret, J. P. Cammas, S. J. Oltmans, B. J. Johnson, D. Tarasick, T. Leblanc, I. S. McDermid, D. Jaffe, R. Gao, J. Stith, T. Ryerson, K. Aikin, T. Campos, A. Weinheimer, and M. A. Avery, 2010: Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463, 344-348.crossref(new window)

Dizengremel, P., D. L. Thiec, M. Bagard, and Y. Jolivet, 2008: Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power. Environmental Pollution 156, 11-15.crossref(new window)

Fares, S., F. Loreto, E. Kleist, and J. Wildt, 2008: Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biology 10, 44-54.crossref(new window)

Fares, S., J. H. Park, E. Ormeno, D. R. Gentner, M. McKay, F. Loreto, J. Karlik, and A. H. Goldstein, 2010: Ozone uptake by citrus trees exposed to a range of ozone concentrations. Atmospheric Environment 44, 3404-3412.crossref(new window)

Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149, 78-90.crossref(new window)

Kim, P.-G., and E.-J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. (in Korean with English abstract)

Gerosa, G., R. Marzuoli, R. Desotgiu, F. Bussotti, and A. Ballarin-Denti, 2008: Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambersexperiment in South Alpine environmental conditions. Environmental Pollution 152, 274-284.crossref(new window)

Han, S. H., and D. H. Kim, 2009: Determination of ozone tolerance on environmental tree species using standard index. Korean Journal of Agricultural and Forest Meteorology 11, 3-12. (in Korean with English abstract)

Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560.

Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics in the leaves of 14 coniferous trees under field conditions. Journal of Korean Forest Society 95, 209-215.

Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.crossref(new window)

Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334.crossref(new window)

Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citrus plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44,125-131.crossref(new window)

Janero, D. R., 1990: Malondialdehyde, and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine 9, 515-540.crossref(new window)

Jones., M. L. M., F. Hayes, G. Mills, T. H. Sparks, and J. Fuhrer, 2007: Predicting community sensitivity to ozone, using Ellenberg Indicator values. Environmental Pollution 146, 744-753.crossref(new window)

Karnosky, D. F., Z. E. Gagnon, R. E. Dickson, M. D. Coleman, E. H. Lee, and J. G. Isebrands, 1996: Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research 26, 23-37.crossref(new window)

Karnosky, D. F., K. E. Percy, B. Xiang, B. Callan, A. Noormets, B. Mankovska, A. Hopkin, J. Sober, W. Jones, R. E. Dickson, and J. G. Isebrands, 2002: Interacting elevated $CO_2$ and tropospheric $O_3$ predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Change Biology 8, 329-338.crossref(new window)

Karnosky, D. F., J. M. Skelly, K. E. Percy, and A. H. Chappelka, 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147, 489-506.crossref(new window)

Kim, D. K., S. H. Han, J. J. Ku, K. Y. Lee, and P. G. Kim, 2008: Physiological and biochemical responses to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10, 47-57.

Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2006: Photosynthetic inhibition in leaves of Alianthus altissima under $O_3$ fumigation. Journal of Ecology and Field Biology 29, 41-47.crossref(new window)

Loreto, F., and S. Fares, 2007: Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiology 143, 1096-1100.crossref(new window)

Ministry of Environment, 2008: Annual Report of Ambient Air Quality in Korea. 393pp.

Nie, G. Y., M. Tomasevic, and N. R. Baker, 1993: Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant, Cell and Environment 16, 643-651.crossref(new window)

Nowak, D. J., and J. F. Dwier, 2007: Understanding the benefits and costs of urban forest ecosystems. Urban and Community Forestry in the Northeast. Kuser, J.E. (ed.) Springer Netherlands. 25-44.

Oksanen, E., and M. Rousi, 2001: Differences of Betula origins in ozone sensitivity based on open-filed experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811.crossref(new window)

Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria, and L. Karenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides ${\times}$ P. tremula) to elevated tropospheric ozone concentration. Tree Physiology 21, 1171-1181.

Panek, J. A., 2004: Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling. Tree Physiology 24, 277-290.

Pell, E. J., N. A. Eckardt, and R. E. Glick, 1994: Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research 39, 453-462.crossref(new window)

Pell, E. J., C. D. Schlagnhaufer, and R. N. Arteca, 1997: Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum 100, 264-273.crossref(new window)

Pell, E. J., J. P. Sinn, B. W. Brendley, L. Samuelson, C. Vinten-Johansen, M. Tien, and J. Skillman, 1999: Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant, Cell & Environment 22, 779-790.crossref(new window)

Reich, P. B., 1983: Effects of low concentrations of $O_3$ on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiology 73, 291-296.crossref(new window)

Ribas A., J. Penuelas, S. Elvira, and B. S. Gimeno, 2005: Ozone exposure induces the activation of leaf senescencerelated processes and morphological and growth changes in seedlings of Mediterranean tree species. EnvironmentalPollution 134, 291-300.crossref(new window)

Schaub, M., J. M. Skelly, J. W. Zhang, J. A. Ferdinand, J. E. Savage, R. E. Stevenson, D. D. Davis, and K. C. Steiner, 2005: Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana andAcer rubrum canopy trees to ambient ozone under forest conditions. Environmental Pollution 133, 553-567.crossref(new window)