한국농림기상학회지, 제 12권 제2호(2010) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 2, (2010), pp. 122~131
DOI: 10.5532/KJAFM.2010.12.2.122
ⓒ Author(s) 2014. CC Attribution 3.0 License.


인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는
가상생태계 모델링

국가수리과학연구소 융복합수리과학부

(2010년 06월 15일 접수; 2010년 06월 26일 수정; 2010년 06월 28일 수락)

Modeling Virtual Ecosystems that Consist of Artificial Organisms
and Their Environment

Division of Fusion Convergence of Mathematical Sciences, National Institute
for Mathematical Sciences, Daejeon 305-340, Korea

(Received June 15, 2010; Revised June 26, 2010; Accepted June 28, 2010)

ABSTRACT
This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem’s dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.

Keyword: Virtual ecosystem, Artificial organism, Agent-based model, Climate change

MAIN

적요

본 논문은 가상 생태계의 개념과 가상생태계를 구현하는데 중요하게 사용되어 질 수 있는 세 가지 수학적-물리학적 접근법을 응용 예와 함께 소개 하였다. 가상생태계란 개체기반 모델로써 인공생명체들이 가상환경하에서 스스로 행동하면서 살아가는 것을 모사하는 컴퓨터 내에 구현된 생태계를 의미한다. 생물의 무리행동을 전산 모사하는 분자동역학모사 접근법과, 흰개미 영토를 전산 모사하는 확률적 격자모델 접근법, 그리고 생물막 성장을 전산 모사하는 규칙기반-세포자동자모델 접근법을 소개하였다. 실 생태계와의 유사성을 높이기 위해 가상생태계 모델은 많은 변수들을 사용하여야 하지만, 기술적인 측면에서 이러한 변수들을 모두 결정하기는 어렵다. 그러나 현재의 눈부신 컴퓨터 성능향상에 힘입어 많은 부분이 극복 되어 지고 있다. 특히, 가상생태계는 기후변화와 같은 환경재앙을 포함하여 많은 복잡한 생태학적 현상을 개체수준의 낮은 계층에서부터 생물집단 또는 외부 환경수준과 같은 높은 계층까지를 통합적으로 이해하는데 큰 도움을 줄 수 있을 것이다. 마지막으로 논문에서는 높은 수준의 계층인 기후변화가 낮은 수준의 계층인 개체기반의 흰개미 생태계에 미치는 복잡한 문제를 어떻게 다룰 수 있는지에 대한 예를 들고 간략하게 논의하였다.

REFERENCES

Adioui, M., J. P. Treuil, and O. Arino, 2003: Alignment in a fish school: a mixed Lagrangian-Eulerian approach. Ecological Modelling 167, 19-32.crossref(new window)

Adams, R. M., C. Rosenzweig, R. M. Peart, J. T. Ritchie, B. A. McCarl, J. D. Glyer, R. B. Curry, J. W. Jones, K. J. Boote, and L. H. Allen, 1990: Global Climate Change and U.S. Agriculture. Nature, 345, 219-224.crossref(new window)

Baes, C. F., H. E. Goeller, J. S. Olson, and R. M. Rotty, 1977: Carbon dioxide and climate: The uncontrolled experiment. American Scientist 65, 310-320.

Bess, H. A., 1970: Termites of Hawaii and the oceanic islands. In: Krishna, K., Weesner, F.M. (Eds.), Biology of Termites, vol. 2. Academic Press, New York, pp. 448-476.

Bradley, M. J, S. J, Kutz, E. Jenkin, and T. M. O’Hara, 2005: The potential impact of climate change on infectious diseases of Arctic fauna. International Journal of Circumpolar Health 64, 468-477.

Cashing, D. H., and F. R. Harden-Jones, 1968: Why do fish school? Nature 218, 918-920.

Davis, M. B., 1990: Biology and palaeobiology of global climate change: Introduction. Trends in Ecology and Evolution 5, 269-270.crossref(new window)

Desai, J. P., J. P. Ostrowski, and V. Kumar, 2002: Modeling and control of formations of nonholonomic mobile robots. IEEE Transaction on Robotics and Automation 17, 905-908.crossref(new window)

Dixon, R. K., J. Smith, and S. Guill, 2003: Life on the edge: vulnerability and adaptation of African ecosystems to global climate change. Mitigation and Adaptation Strategies for Global Change 8, 93-113.crossref(new window)

Dukes, J. S., and H. Mooney, 1999: Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14, 135-139.crossref(new window)

Emanuel, W. R., J. S. Olson, and G. G. Killough, 1980: The expanded use of fossil fuels by the U.S. and the global carbon dioxide problem. Journal of Environmental Management 10, 37-49.

Gardner, R. H., J. B. Mankin, and W. R. Emanuel, 1980: A comparison of three world carbon models. Ecological Modelling 8, 313-332.crossref(new window)

Hurtt, G. C., and S. W. Pacala, 1995: The consequences of recruitment limitation: reconciling chance, history, and competitive differences between plants. Journal of Theoretical Biology 176, 1-12.crossref(new window)

Huth, A., and C. Wissel, 1994: The simulation of fish schools in comparison with experimental data. Ecological Modelling 75/76, 135-145.crossref(new window)

Kane, S., J. M. Reilly, and J. Tobey, 1992: An Empirical Study of the Economic Effects of Climate Change on World Agriculture. Climatic Change, 21, 17-35.crossref(new window)

King, E. G., and W. T. Spink, 1975: Development of incipient Formosan subterranean termite colonies in the filed. Annals of the Entomological Society of America 68, 355-358.

Koneswaran, G. and D. Nierenberg, 2008: Global farm animal production and global warming: impacting and mitigating climate change. Environmental Health Perspectives 116, 578-582.crossref(new window)

Lee, S.-H., and N.-Y. Su, 2009a: The Influence of branching tunnels on subterranean termites’ foraging efficiency: considerations for simulations. Ecological Informatics 4, 152-155.crossref(new window)

Lee, S.-H., and N.-Y. Su, 2009b: A Simulation Study of Subterranean Termite’s Territory Formation. Ecological Informatics 4, 111-116.crossref(new window)

Lee, S.-H., H. K. Pak, and T.-S. Chon, 2004: Criticality in Two Competing Species with Allelopathy based on Cellular Automaton Model. Journal of the Korean Physical Society 44, 651-655.

Lee, S.-H., H. K. Pak, and T.-S. Chon, 2006: Dynamics of Prey-Flock Deformations in Response to Predator’s Attack. Journal of theoretical biology 240, 250-259.crossref(new window)

Lee, S.-H., N.-Y. Su, and P. Bardunias, 2007: Exploring landscape structure effect on termite territory size using a model approach. Biosystems 90, 890-896.crossref(new window)

Li, G. X., Z. R. Dai, D. Z. Zhong, and D. R. Gao, 1979: Integrated control of termites. In: Institute of Zoology, Academica Sinica (Ed.), Integrated Control of Major Insect Pests in China. Science Press, Beijing, pp. 401-428 (in Chinese).

Maldonado-Coelho, M., and M. A. Marini, 2004: Mixed-species bird flocks from Brazilian Atlantic forest: the effects of forest fragmentation and seasonality on their size, richness and stability. Biological Conservation 116, 19-26.crossref(new window)

Mendelsohn, R, A. Dinar, and L. Williams, 2006: The distributional impact of climate change on rich and poor countries. Environment and Development Economics 11, 159-178.crossref(new window)

Messenger, M. T., and N.-Y. Su, 2005: Colony characteristics and seasonal activity of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in Louis Armstrong Park, New Orleans, Louisiana. Journal of Entomological Sciences 40, 268-279.

Murphy, E. J., P. N. Trathan, J. L. Watkins, K. Reid, M. P. Meredith, J. Forcada, S. E. Thorpe, N. M. Johnston, and P. Rothery, 2007: Climatically driven fluctuations in Southern Ocean ecosystems. Proceeding of the Royal Society Biological Sciences 274, 3057-3067.crossref(new window)

Nakamaru, M., 2006: Lattice model in ecology and social sciences. Ecological Research 21, 364-369.crossref(new window)

Parrish, J. K., S. V. Viscido, and D. Grunbaum, 2002: Self-organized fish schools: an examination of emergent properties. The Biological Bulletin 202, 296-305.crossref(new window)

Pastor, J., and W. M. Post, 1988: Response of northern forests to CO2 -induced climate change. Nature 334, 55-58.crossref(new window)

Peacor, S. D., S. Allesina, R. L. Riolo, and T. S. Hunter, 2007: A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs. Ecological Modelling, 205, 13-28.crossref(new window)

Reynolds, C. W., 1987: Flock, herds, and school: A distributed behavioral model, in computer graphics. SIGGRAPH 87′ Conference proceedings 21(4), 25-34

Schlamadinger, B., J. Cushman, and G. Marland, 1995: Biomass Fuels, Energy, Carbon, and Global Climate Change. ORNL Review. 28, 14-21.

Schmidt, K., A. Atkinson, D. Stubing, J. W. McClelland, J. P. Montoya, and M. Voss, 2003: Trophic relationships among Southern Ocean copepods and krill: Some uses and limitations of a stable isotope approach. Limnology and Oceanography 48, 277-289.crossref(new window)

Stoodley, P., S. Yang, H. Lappin-Scott, and Z. Lewandowski, 1997: Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy. Biotechnology and Bioengineering 56, 681-688.

Videler, J. J., 1993: Fish Swimming. Chapman & Hall, London.

Viscido, S. V., M. Millar, and D. S. Wethey, 2001: The response of a selfish herd to an attack from outside the group perimeter. Journal of Theoretical Biology 208, 315-328.crossref(new window)

Zheng, M., Y. Kashimori, O. Hoshino, K. Fujita, and T. Kambara, 2005: Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. Journal of Theoretical Biology 235, 153-167.crossref(new window)