한국농림기상학회지, 제 12권 제1호(2010) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1, (2010), pp. 45~62
DOI: 10.5532/KJAFM.2010.12.1.045
ⓒ Author(s) 2014. CC Attribution 3.0 License.


침엽수림 상부의 단일층 풍속 관측으로부터의 영면변위 추정에 관하여

유재일(1), 홍진규(2), 권효정(1), 임종환(3), 김 준(1,4)
(1)연세대학교 생물기상연구실/지구환경연구소, 대기과학과,
(2)국가수리과학연구소, (3)국립산림과학원 산림보전부,
(4)동경대학교 GCOE 지속가능한 도시재생센터/산업과학연구소

(2009년 12월 09일 접수; 2010년 03월 26일 수정; 2010년 03월 25일 수락)

On Estimation of Zero Plane Displacement from Single-Level Wind
Measurement above a Coniferous Forest

Jaeill Yoo(1), Jinkyu Hong(2), Hyojung Kwon(1), Jong-Hwan Lim(3), Joon Kim(1,4)
(1)Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences,
Yonsei University, 262 Sungsanno Seodaemun-gu Seoul 120-749, Korea
(2)National Institute for Mathematical Sciences, 628 Daeduk-Boulevard Yuseong-gu, Daejeon 305-340, Korea
(3)Division of Forest Conservation, Korea Forest Research Institute, 57 Hoegiro Dongdeamun-gu, Seoul 130-712, Korea
(4)Global Center of Excellence for Sustainable Urban Regeneration & Institute of Industrial Science,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

(Received December 09, 2009; Revised March 26, 2010; Accepted March 25, 2010)

ABSTRACT
Zero plane displacement (d) is the elevated height of the apparent momentum sink exerted by the vegetation on the air. For a vegetative canopy, d depends on the roughness structure of a plant canopy such as leaf area index, canopy height and canopy density, and thus is critical for the analysis of canopy turbulence and the calculation of surface scalar fluxes. In this research note, we estimated d at the Gwangneung coniferous forest by employing two independent methods of Rotach (1994) and Martano (2000), which require only a single-level eddy-covariance measurement. In general, these two methods provided comparable estimates of d/hc (where hc is the canopy height, i.e., ~23m), which ranged from 0.51 to 0.97 depending on wind directions. These estimates of d/hc were within the ranges (i.e., 0.64~0.94) reported from other forests in the literature but were sensitive to the forms of the nondimensional functions for atmospheric stability. Our finding indicates that one should be careful in interepreation of zero plane displacement estimated from a single-level eddy covariance measurement that is conductaed within the roughness sublayer.

Keyword: Zero plane displacement, KoFlux, Coniferous forest, Logarithmic wind profile, Similarity theory

MAIN

적요

영면변위(d)는 거친 식생군락에 의해 운동량이 모두 흡수되어 군락 내의 대수적 풍속 프로파일이 0이 되는 높이를 말한다. 군락의 표면 거칠기의 구조를 나타내는 영면변위는 군락난류의 분석과 지표 스칼라 플럭스의 계산에 매우 중요하다. 본 단보에서는 Monin-Obukhov 상사이론에 기반을 두고 단일층에서 관측된 평균수평풍속 자료를 사용하는 두 가지 다른 방법을 사용하여 광릉침엽수림에서 d 값을 추정하였다. 관측지의 비균질성과 복잡성을 고려해서, 표면거칠기와 바람체계가 d에 미칠수 있는 영향을 살펴보기 위해, 자료를 매 30o 간격의 풍향별로 나누었다. 전반적으로
두 방법을 사용한 결과는 서로 비슷했는데, d/hc (여기서 hc는 군락의 높이로서 약 ~23m)는 풍향에 따라 0.51~0.97의 범위를 보였다. 이러한 d/hc의 값의 범위는 문헌에 보고되어 있는 범위(0.64~0.94)와 크게 다르지 않았으나, 다소 높은 쪽에 분포되어 있었다. 이러한 원인의 하나로는 관측이 두 방법의 전제인 Monin-Obukhov 상사이론이 성립하지 않는 거칠기아층에서 이루어졌기 때문인 것으로 사료된다. 따라서 관측높이가 거칠기 아층에 존재할 경우에는 단일층 풍속으로부터 영면변위를 추정하는 방법을 적용하고 그 결과를 해석하는 데에 세심한 주의가 필요하다.

REFERENCES

Arya, S. P 2001: Introduction to micrometeorology. AcademicPress, London, UK, 188-203.

Beljaars, A. C. M., P. Schotanus, and F. T. M. Nieuwstadt,1983: Surface layer similarity under nonuniform fetchconditions. Journal of Applied Meteorology 22(10),1800-1810.

de Bruin, H. A. R., and C. J. Moore, 1985: Zero-planedisplacement and roughness length for tall vegetation,derived from a simple mass conservation hypothesis.Boundary-Layer Meteorology 31(1), 39-49.crossref(new window)

Foken, T., 2006: 50 Years of the Monin–Obukhov similaritytheory. Boundary-Layer Meteorology 119(3), 431-447.crossref(new window)

Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric BoundaryLayer Flows. Oxford University Press, New York, 15-21pp.

Katul, G., S. M. Goltz, C.-I. Hsieh, Y. Cheng, F. Mowry,and J. Sigmon, 1995: Estimation of surface heat andmomentum fluxes using the flux-variance method aboveuniform and non-uniform terrain. Boundary-LayerMeteorology 74(3), 237-260.crossref(new window)

Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon,J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B.Lee, B.-L. Lee, and S. Kim, 2006: HydroKorea andCarboKorea: cross-scale studies of ecohydrology andbiogeochemistry in a heterogeneous and complex forestcatchment of Korea. Ecological Research 21(6), 881-889.crossref(new window)

Lee, D., J. Kim, S.-J. Kim, S.-K. Moon, J. Lee, J.-H. Lim,Y. Son, S. Kang, S. Kim, K. Kim, N. Woo, B. Lee, andS. Kim, 2007: Lessons from cross-scale studies of waterand carbon cycles in the Gwangneung forest catchmentin a complex landscape of monsoon Korea. Korean.Journal of Agricultural and Forest Meteorology 9(2),149-160.

Lim, J.-H., 2006: Ecological measurement and analysis.Development of HydroKorea – Sustainable Water ResourcesResearch Program, 300 pp.

Lloyd, C. R., A. D. Culf, A. J. Dolman, and J. H. C. Gash,1991: Estimates of sensible heat flux from observationsof temperature fluctuations. Boundary-Layer Meteorology57(4), 311-322.crossref(new window)

Molion, L. C. B., and C. J. Moore, 1983: Estimating thezero-plane displacement for tall vegetation using a massconservation method. Boundary-Layer Meteorology 26(2),115-125.crossref(new window)

Moon, S.-K., S.-H. Park, J. Hong, and J. Kim, 2005: Spatial Characteristics of Gwangneung Forest Site Based onHigh Resolution Satellite Images and DEM. KoreanJournal of Agricultural and Forest Meteorology 7(1),115-123.

Raupach, M. R. 1994: Simplified expressions for vegetationroughness length and zero-plane displacement asfunctions of canopy height and area index. Boundary-Layer Meteorology 71, 211-216.crossref(new window)

Shaw, R. H., and A. R. Pereira, 1982: Aerodynamic Roughnessof a Plant Canopy – a Numerical Experiment. AgriculturalMeteorology 26, 51-65.crossref(new window)

Sozzi, R., M. Favaron, and T. Georgiadis, 1998: Methodfor Estimation of Surface Roughness and SimilarityFunction of Wind Speed Vertical Profile. Journal ofApplied Meteorology 37(5), 461-469.

Stull, R. B. 1988: An Introduction to Boundary LayerMeteorology. Kluwer Academic Publishers, Dordrecht,The Netherlands, 262-263 pp.

Takagi, K., A. Miyata, Y. Harazono, N. Ota, M. Komine,and M. Yoshimoto, 2003: An alternative approach todetermining zero-plane displacement, and its applicationto a lotus paddy field. Agricultural and Forest Meteorology115(3-4), 173-181.crossref(new window)

Tillman, J. E., 1972: The indirect determination of stability,heat and momentum fluxes in the atmospheric boundarylayer from simple scalar variables during dry unstableconditions. Journal of Applied Meteorology 11(5), 783-792.

Wiernga, J., 1993: Representative roughness parameters forhomogeneous terrain. Boundary-Layer Meteorology 63(4),323-363.crossref(new window)

Wyngaard, J. C., O. R. Cote, and Y. Izumi, 1971: Localfree convection, similarity, and the budgets of shearstress and heat flux. Journal of the Atmospheric Sciences28(7), 1171-1182.