한국농림기상학회지, 제 12권 제1호(2010) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1, (2010), pp. 1~10
DOI: 10.5532/KJAFM.2010.12.1.001
ⓒ Author(s) 2014. CC Attribution 3.0 License.


수치예보모형을 이용한 역학적 규모축소 기법을 통한
농업기후지수 모사

안중배(1), 허지나(1), 심교문(2)
(1)부산대학교 지구환경시스템학부, (2)국립농업과학원

(2009년 11월 19일 접수; 2010년 03월 24일 수정; 2010년 03월 24일 수락)

A Simulation of Agro-Climate Index over the Korean Peninsula
Using Dynamical Downscaling with a Numerical
Weather Prediction Model

Ahn, Joong-Bae(1), Jina Hur(1), Kyo-Moon Shim(2)
(1)Division of Earth Environment, Pusan National University, 30 Changjeon-dong,
Keumjeong-ku, Pusan 609-735, Republic of Korea
(2)National Academy of Agricultural Science, RDA, Suwon, Korea

(Received November 19, 2009; Revised March 24, 2010; Accepted March 24, 2010)

ABSTRACT
A regional climate model (RCM) can be a powerful tool to enhance spatial resolution of climate and weather information (IPCC, 2001). In this study we conducted dynamical downscaling using Weather Research and Forecasting Model (WRF) as a RCM in order to obtain high resolution regional agroclimate indices over the Korean Peninsula. For the purpose of obtaining detailed high resolution agroclimate indices, we first reproduced regional weather for the period of March to June, 2002-2008 with dynamic downscaling method under given lateral boundary conditions from NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data. Normally, numerical model results have shown biases against observational results due to the uncertainties in the modelis initial conditions, physical parameterizations and our physical understanding on nature. Hence in this study, by employing a statistical method, the systematic bias in the modelis results was estimated and corrected for better reproduction of climate on high resolution. As a result of the correction, the systematic bias of the model was properly corrected and the overall spatial patterns in the simulation were well reproduced, resulting in more fine-resolution climatic structures. Based on these results, the fine-resolution agro-climate indices were estimated and presented. Compared with the indices derived from observation, the simulated indices reproduced the major and detailed spatial distributions. Our research shows a possibility to simulate regional climate on high resolution and agro-climate indices by using a proper downscaling method with a dynamical weather forecast model and a statistical correction method to minimize the model bias.

Keyword: Agro-climate index, Dynamical downscaling, Numerical weather prediction model, Statistical correction method

MAIN

적요

본 연구에서는 기상예측 모형을 이용하여 상세한 농업기후지수를 모사하고자 하였다. 이를 위해서 NCEP/NCAR 재분석 자료를 지역기후모형인 WRF의 초기 및 경계조건으로 하여 2002년 3월부터 7년간 상세한 기후 자료를 생산하고, 이렇게 구한 기후 자료를 통계적 보정을 거쳐 계통적 오차를 제거함으로써 그 기간의 기후를 재현하였으며 이를 이용하여 상세한 농업기후지수로 생산하였다. 수치 실험을 통해 생산된 상세 지역기후자료는 대순환 모형이 모사할 수 없는 남한의 복잡한 지형적 구조와 전체적인 관측 공간 패턴을 모사하였다. 통계적 보정은 모형결과가 관측에 비해 과소모사 되던 경향을 제거함으로써 보다 상세하고 관측에 가까운 시·공적 기후자료의 생산을 가능하게 하였다. 이렇게 모사된 기후 자료를 이용하여 식물온도 출현초일, 작물온도 출현초일, 벼 이앙기의 저온 출현율, 종상일 등의 농업기후지수들에 대한 상세한 분포를 생산하였다. 보정 전 모형 결과에서는 계통적 오차인 모형의 기온 과소모사 경향에 의해 전반적인 유효온도와 종상일이 늦게 출현하였으며, 저온 출현율의 빈도가 높게 나타났다. 보정 후 모형 결과에서는 계통적 오차의 보정에 의해 유효온도 10oC 출현일을 제외한 유효온도 출현일과 종상일이 앞당겨졌으며, 저온 출현일 빈도가 감소하였다. 보정 후 모형 결과에서 유도된 유효온도 10oC 출현일은 보정 전 모형결과보다 3일 늦게 모사되고 있으나 보정 전 모형 결과에서 모사하지 못한 지역적 특징을 모사하고 있어 국지적으로 나타나는 작물온도 출현초일의 세부적인 패턴을 이해하는데 유용한 결과라고 판단된다. 모형의 결과로 유도된 농업기후지수는 복잡한 지역적 편차를 가지면서 정량적·정성적으로 관측에서 유도한 결과와 유사하게 나타났다. 반면 통계적 보정을 적용하여도 중부 논농사 지대의 작물온도 출현초일은 여전히 잘 모사되지 못하고 있는데 이는 모형의 결과가 계통적 오차 이외에도 또 다른 불확실성에 의한 문제를 내제하고 있음을 보여주는 결과이다. 향후 물리적 모수화 과정의 개선, 역학적 규모축소방법의 최적화 그리고 통계적 보정 방법의 다양한 적용을 통해 보다 향상된 농업기후지수를 생산할 수 있을 것으로 판단된다. 이러한 실험 결과는 농업 경영자들에게 상세 농업기후지수 분포의 이해를 도와줄 뿐만 아니라 본 연구의 실험 방식이 농업 예측에 활용될 경우 장기 예측 및 기후변화에 따른 예측을 위한 정보에 긴요하게 사용될 수 있을 것으로 생각된다.

REFERENCES

Agricultural Technical Institute, 1986: Features of KoreanAgro-climate and Countermeasure of Capital MeteorologicalDisasters. Rural Development Administration,194pp.

Ahn, J. B., C. K. Park, and E. S. Im, 2002: Reproductionof Regional Scale Surface air Temperature by EstimatingSystematic Bias of Mesoscale Numerical Model. Journal ofKorean Meteorological Society 38(1), 69-80.

Boo, K. O., W. T. Kwon, J. H. Oh, H. J. Baek, 2004: Responseof global warming on regional climate change overKorea: An experiment with the MM5 model. GeophysicalResearch Letters 31, L21206.crossref(new window)

Dudiha, J., 1989: Numerical study of convection observedduring the winter monsoon experiment using a msoscaletwo-dimensional model. Journal of the AtmosphericSciences 46, 3077-3107.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V.Koren, G. Gayno, and J. D. Tarpley, 2003: Implementationof Noah land surface model advances in the NationalCenters for Environmental Prediction operational mesoscaleEta model. Journal of Geophysical Research 108(D22),8851pp.crossref(new window)

Fisher, R. A. 1915: Frequency distribution of the values ofthe correlation coefficient in samples of an indefinitelylarge population. Biometrika 10(4), 507-521.

Hong, S. Y. and H. L. Pan, 1996: Nonlocal boundary layervertical diffusion in a medium-range forecast model.Monthly Weather Review 124, 2322-2339.

Hong, S. Y. and J. Dudhia, 2003: Testing of a new nonlocalboundary layer vertical diffusion scheme in numericalweather prediction applications. 20th Conference on WeatherAnalysis and Forecasting/16th Conference on NumericalWeather Prediction, Seattle, WA, 17.3pp.

Hong, S. Y., and J. O. J. Lim, 2006: The WRF Single-Moment6-Class Microphysics Scheme (WSM6). Journal of KoreanMeteorological Society 42(2), 129-151.

Hur, J., J. B. Ahn, and C. Kim, 2009: Reproduction of RegionalScale Climate over Korean Peninsula by CorrectingSystematic Bias of Regional Climate Model. 2009 FallConference, Deagu, Korean Meteorological Society,282-283.

Im, E. S., J. B. Ahn, A. R. Remedio, and W. T. Kwon, 2008a:Sensitivity of the regional climate of East/Southeast Asiato convective parameterizations in the RegCM3 modellingsystem. Part 1: Focus on the Korean peninsula. InternationalJournal of Climatology 28(14), 1861-1877.crossref(new window)

Im, E. S., J. B. Ahn, W. T. Kwon, and F. Giorgi, 2008b:Multi-decadal scenario simulation over Korea using aone-way double-nested regional climate model system.Part 2: future climate projection (2021–2050). ClimateDynamics 30(2/3), 239-254.crossref(new window)

IPCC, 2007: Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the FourthAssessment Report of the Intergovernmental Panel onClimate Change, S. Solomon, D. Qin, M. Manning, Z.Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L.Miller (Eds.), Cambridge University Press, Cambridge,United Kingdom.

Jeong K. W., W. K. Kim, J. C. Nam, B. C. Choi, M. Y.Lee, Y. S. Chun, K. B. Yoo, J. T. Choi, J. S. Jeon, J. I.Yun, M. Y. Shin, B. Y. Lee, J. T. Lee, S. H. Kim, M. D.Yong, S. J. Jun, O. H. Kim, and J. H. Yang, 1990:Development of an Operational Weather InformationSystem for Agricultural Applications in Cheju Island(III).Ministry of Science and Technology, 28pp.

Kain, J. S., and J. M. Fritsch, 1990: A one-dimensionalentraining/ detraining plume model and its application inconvective parameterization. Journal of the AtmosphericSciences 47, 2784-2802.

Kain, J. S., and J. M. Fritsch, 1993: Convective parameterizationfor mesoscale models: The Kain-Fritcsh scheme.The representation of cumulus convection in numericalmodels, K. A. Emanuel and D. J. Raymond (Eds.),American Meteor Society, 246 pp.

Kim, J. H., and J. I. Yun, 2008: On Mapping Growing Degree-Days (GDD) from Monthly Digital Climatic Surfaces forSouth Korea. Korean Journal of Agricultural and ForestMeteorology 10(1), 1-8.

Ministry of Agriculture and Forestry, 2001: Developmentof Regional Climate Prediction and Application Systemfor Agriculture. Ministry of Agriculture and Forestry, 8pp.

Ministry of Science and Technology, 1990: Development ofan Operational Weather Information System for AgriculturalApplications in Cheju Island(III). Ministry of Scienceand Technology, 28pp.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S.A. Clough, 1997: Radiative trans-fer for inhomogeneousatmosphere: RRTM, a validated correlated-k model forthe long-wave. Journal of Geophysical Research 102(D14),16663-16682.crossref(new window)

Park, C. K., J. B. Ahn, H. S. Jung, J. T. Lee, and M. K.Kim, 2001: Development of Regional Climate Predictionand Application System for Agriculture. Ministry ofAgriculture and Forestry, 8pp.

Rural Development Administration, 1986: Feature of Korea’sagricultural climatology and meteorological disastermeasures of capital. Rural Development Administration,194pp.

Timbal, B., A. Dufour, and B. McAvaney, 2003: An estimateof future climate change for western France using astatistical downscaling technique. Climate Dynamics 20,807-823.

Shim, K. M., G. Y. Kim, K. A. Roh, H. C. Jeong, and D. B.Lee, 2008: Evaluation of Agro-Climatic Indices underClimate Change Korean. Korean Journal of Agriculturaland Forest Meteorology 10(4), 113-120. (in Korean withEnglish abstract)

Yun, J. I., 2007: Applications of “High Definition DigitalClimate Maps” in restructuring of Korean agriculture.Korean Journal of Agricultural and Forest Meteorology9, 1-16. (in Korean with English abstract)

http://encyber.com/search_w/reference/bottom1.php?masterno=89142(2003.08.08)