한국농림기상학회지, 제 13권 제2호(2011) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 2, (2011), pp. 101~108
DOI: 10.5532/KJAFM.2010.13.2.101
ⓒ Author(s) 2014. CC Attribution 3.0 License.


클라우드 컴퓨팅을 이용한 기후변화 영향평가

서울대학교 식물생산과학부

(2011년 06월 14일 접수; 2011년 06월 26일 수락)

Impact Assessment of Climate Change by Using Cloud Computing

Department of Plant Science, Seoul National University, Seoul 151-921, Korea

(Received June 14, 2011; Accepted June 26, 2011)

ABSTRACT
Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service – Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.

Keyword: Climate change, Cloud computing, Precipitation, Rain day

MAIN

적요

기후변화는 자연 및 농업생태계에 막대한 영향을 미칠 수 있다. 이러한 기후변화 영향 평가를 위해 모형의 입력자료로서 예측된 기후자료가 사용되고 있다. 그러나 이러한 연구들은 자주 수행되지는 않기 때문에, 실제의 컴퓨터 자원들을 구축하거나 유지하지 않고 필요에 따라 자료처리를 하기 위해서는 가상적으로 다수의 운영체제를 구동할 수 있는 클라우드 컴퓨팅을 사용하는 것이 유용하다. 또한, 클라우드 컴퓨팅을 사용할때 소프트웨어 라이센스를 필요로 하지 않는 오픈소스 지리분석용 소프트웨어를 사용하는 것이 유리하다. 예비실험에서, Amazon Web Service-Elastic Compute Cloud(EC2)를 사용하여 월 강우일수를 계산하였다. 총 70기가바이트에 이르는 일별 기후 예측 자료를 사용하여 자체 제작된 데이타베이스 처리 응용프로그램을 가상머신에서 처리하였다. 이 응용프로그램은 기후자료 처리와 데이타베이스 접속을 위해 오픈소스 라이브러리를 기반으로하여 제작되었다. 이 분석에서는 21세기동안 전지구적으로 강우일수를 계산하기 위해 10대의 가상 클라이언트와 1대의 서버를 이용하여 약 170억개의 자료를 32시간 내에 처리하였다. 이번 연구 결과는 클라우드 컴퓨팅이 막대한 양의 자료 처리를 필요로하는 기후변화 영향평가 연구와 분석에 큰 도움이될 수 있음을 보여 준다.

REFERENCES

Asher, M. J. C., and Williams, G. E., 1991: Forecasting the national incidence of sugar-beet powdery mildew from weather data in Britain. Plant Pathology 40(1), 100-107.crossref(new window)

Coakley, S. M., H. Scherm, and S. Chakraborty, 1999: Climate change and plant disease management. Annual Review of Phytopathology 37, 399-426.crossref(new window)

Dickenson, R. E., S. E. Zebiak, J. L. Anderson, M. L. Blackmon, de C. Luca, T. F. Hogan, M. Iredell, J. Ming, R.B. Rood, M. J. Suarez, and K. E. Taylor, 2002: How can we advance our weather and climate models as a community? Bulletin of the American Meteorological Society 83(3), 431-434.

Foster, I., C. Kesselman, and S. Tuecke, 2001: The Anatomy of the grid: enabling scalable virtual organizations. International Journal of High Performance Computing Applications 15(3), 200-222.crossref(new window)

Di Giacomo, M., 2005: MySQL: Lessons learned on a digital library. IEEE Software 22(3), 10-13.

Gordon, H. B., L. D. Rotstayn, J. L. McGregor, M. R. Dix, E. A. Kowalczyk, S. P. O’ Farrel, L. J. Waterman, A. C. Hirst, S. G. Wilson, M. A. Collier, I. G. Watterson, and T. I. Elliott, 2002: The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Technical Paper No. 60, Commonwealth Scientific and Industrial Research Organisation Atmospheric Research, Aspendale, Victoria, Australia.

Henseler, M., A. Wirsig, S. Herrmann, T. Krimly, and S. Dabbert, 2009: Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agricultural Systems 100(1-3), 31-42.crossref(new window)

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15), 1965-1978.crossref(new window)

Izaurralde, R. C., N. J. Rosenberg, R. A. Brown and A. M. Thomson, 2003: Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Part II. Regional agricultural production in 2030 and 2095. Agricultural and Forest Meteorology 117(1-2), 97-122.crossref(new window)

IPCC, 2001: In: Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, van der P. J. Linden, X. Dai, K. Maskell, C. A. Johnson, (Eds.) Climate change, 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.

IPCC, 2007: In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Climate Change, 2007: the Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.

Kirkby, M. J., and Cox, N. J., 1995: A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. CATENA 25 (1-4), 333-352.crossref(new window)

Meehl, G. A., W. M. Washington, B. D. Santer, W. D. Collins, J. M. Arblaster, H. Aixue, D. M. Lawrence, T. Haiyan, L. E. Buja, and W. G. Strand, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. Journal of Climate 19(11), 2597-2616.crossref(new window)

Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Forth Assessment Report models. Journal of Geophysical Research doi:10.1029/2005JD006323.crossref(new window)

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001), 768-772.crossref(new window)

Palmer, T. N., and J. Ralsanen, 2002: Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415(6871), 512-514.crossref(new window)

Reilly, J., F. Tubiello, B. McCarl, D. Abler, R. Darwin, K. Fuglie, S. Hollinger, C. Izaurralde, S. Jagtap, J. Jones, L. Mearns, D. Ojima, E. Paul, K. Paustian, S. Riha, N. Rosenberg, and C. Rosenzweig, 2003: U.S. Agriculture and climate change: New results. Climatic Change 57(1-2), 43-69.crossref(new window)

Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421(6918), 57-60.crossref(new window)

Rosenzweig, C., A. Iglesias, X. B. Yang, P. R. Epstein, and E. Chivian, 2001: Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Global Change & Human Health 2(2), 90-104.crossref(new window)

Ross, J.W., and G. Westerman, 2004: Preparing for utility computing: the role of IT architecture and relationship management. IBM Systems Journal 43(1), 5-19.crossref(new window)

Schatz, M.C., 2009: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25(11), 1363-1369.crossref(new window)

Schwartz, B., P. Zaitsev, V. Tkachenko, et al., 2008: High performance MySQL: optimization, backups, replication, and more. 2nd ed. O’Reilly, Sebastopol.

Stockwell, D. R. B., J. H. Beach, A. Stewart, G. Vorontsou, D. Vieglais, and R. Scachetti Pereira, 2006: The use of the GARP genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity. Ecological modelling 195(1-2), 139-145.crossref(new window)

Turner, M., D. Budgen, and P. Brereton, 2003: Turning software into a service. Computer 36(10), 38-44.

Vaquero, L. M., L. Rodero-Merino, J. Caceres, and M. Lindner, 2009: A break in the clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review 39(1), 50-55.crossref(new window)

Waldo, J., G. Wyant, A. Wollrath, and S. Kendall, 1994: A note on distributed computing. Technical Report TR-94-29, Sun Microsystems Inc., Mountain view, CA, USA.

Walther, G.-R, E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 416(6879), 389-395.crossref(new window)

Weiss, A., 2007: Computing in the clouds. netWorker 11(4), 16-25.crossref(new window)

Zhang, B., I. Valentine, and P. D. Kemp, 2007a: Spatially explicit modelling of the impact of climate change on pasture production in the North Island, New Zealand. Climatic Change 84(2), 203-216.crossref(new window)

Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007b: Detection of human influence on twentieth-century precipitation trends. Nature 448(7152), 461-465.crossref(new window)