한국농림기상학회지, 제 13권 제2호(2011) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 2, (2011), pp. 87~92
DOI: 10.5532/KJAFM.2011.13.2.087
ⓒ Author(s) 2014. CC Attribution 3.0 License.


광릉 활엽수림의 낙엽층 차단저류능 추정에 관하여

강민석(1), 홍제우(2), 봉하영(1), 장혜미(1), 최명제(1), 장유희(3), 천정화(4), 김 준(2)
(1)연세대학교 대기과학과/지구환경연구소, (2)서울대학교 조경·지역시스템공학부,
(3)연세대학교 의예과, (4)국립산립과학원 산림보전부

(2011년 03월 11일 접수; 2011년 06월 20일 수정; 2011년 06월 23일 수락)

On Estimating Interception Storage Capacity of Litter Layer
at Gwangneung Deciduous Forest

Minseok Kang(1), Je-woo Hong(2), Hayoung Bong(1), Hye Mi Jang(1), Myung Je Choi(1), Yoo Hee Jang(3), Jeong Hwa Cheon(4), Joon Kim(2)
(1)Global Environment Laboratory & Department of Atmospheric Sciences,
Yonsei University, Seoul 120-749, Korea
(2)Department of Landscape Architecture and Rural System Engineering,
Seoul National University, Seoul 151-921, Korea
(3)Department of Premedicine, Yonsei University, Seoul 120-749, Korea
(4)Division of Forest Conservation, Korea Forest Research Institute, Seoul 130-712, Korea

(Received March 11, 2011; Revised June 20, 2011; Accepted June 23, 2011)

ABSTRACT
In order to better understand the role of litter layer on hydrological cycle in forest, we estimated the interception storage capacity of the litter layer at Gwangneung deciduous forest. We first made a thickness map of the litter layer at the study site based on field survey and then collected representative litter samples for the laboratory experiment. We constructed a measurement device consisting of sample tray, drain collector, tipping bucket, and a data logger. Using this device, we examined the relationship between the interception storage capacity (Ci) and the thickness (d) of the litter layer. For the range of d from 25 to 100 mm, there was a simple linear relationship between Ci and d, which changed with the intensity of the simulated rain. The results were extrapolated to d smaller than 25 mm by considering that no interception occurs without litter layer. Overall, Ci increased rapidly when d was low (< 25 mm) but the rate of increase decreased as d increased due to clumping. With an average thickness of 59 mm, the estimated Ci at the site was 0.94 (±0.39) mm. Such an interception storage capacity of the litter layer is comparable to that of the forest canopy, suggesting that the litter layer can play an important role in the forest water cycle.

Keyword: Interception storage capacity, Litter layer, Thickness map, Laboratory experiment, Deciduous forest

MAIN

적요

본 연구에서는 광릉 활엽수림의 수문순환과정에서 낙엽층의 역할을 이해하기 위해 낙엽층의 차단저류능을 산정하였다. 낙엽층 두께의 공간 분포를 조사하여 낙엽층 두께 지도를 작성하였으며, 낙엽층의 두께와 차단저류능 간의 관계를 확인하고자 낙엽 표본을 채집하여 실험을 수행하였다. 25~100mm 두께의 낙엽 표본에 대한 실험 결과, 둘 간에 선형 비례 관계가 존재함을 확인하였다. 낙엽층의 응집이 상대적으로 적은 0~25mm 두께에서는 낙엽층 두께의 증가에 따라 더 급격한 차단저류능 증가가 일어나는 비선형적인 관계를 보였다. 또한 강우 강도가 약한 경우에도 낙엽층 두께와 차단저류능 간의 비선형 관계가 더 크게 나타날 수 있음을 확인하였다. 제작된 낙엽층 두께 지도와 낙엽층 두께와 차단저류능 사이의 관계식을 통하여 산정한 낙엽층의 차단저류능은 평균 0.94±0.39mm 이었다. 산정된 낙엽층(평균 두께 59±32mm)의 차단저류능은 군락의 차단저류능과 비교할 때 그 크기가 비슷하였으며, 이는 낙엽층이 광릉 활엽수림의 수문순환에 중요한 역할을 할 수 있음을 보여준다.

REFERENCES

Crockford, R. H., and D. P. Richardson, 2000: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14, 2903-2920.

de Groen, M. M., and H. H. G. Savenije, 2006: A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resources Research 42, W12417, doi:10.1029/2006WR005013.crossref(new window)

Dickinson, R. E., 1984: Modelling evapotranspiration for three dimensional global climate models. Climate Processes and Climate Sensitivity, J. E. Hansen and T. Takahashi (Eds.), American Geophysical Union, 58-72.

Eagleson, P. S., 1978: Climate, soil and vegetation. 2: The distribution of annual precipitation derived from observed storm sequences. Water Resources Research 14, 713-721.crossref(new window)

Kim, C., J. H. Lim, and J. H. Shin, 2003: Nutrient dynamics in litterfall and decomposing leaf litter at the Kwangneung Deciduous Broad-Leaved Natural Forest. Korean Journal of Agricultural and Forest Meteorology 5, 87-93.

Kim, K., J. Jun, J. Yoo, and Y. Jeong, 2005: Troughfall, stemflow and interception loss of the natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young mixed Forest in Yangju, Gyeonggido(I) -with a special reference on the results of measurement-. Journal of Korean Forest Society 94, 488-495. (in Korean with English abstract)

Lim, J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and J. S. Oh, 2003: Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5, 101-109.

Massman, W. J., 1983: The derivation and validation of a new model for the interception of rainfall by forests. Agricultural Meteorology 28, 261-286.crossref(new window)

Putuhena, W. M., and I. Cordery, 1996: Estimation of interception capacity of the forest floor. Journal of Hydrology 180, 283-299.crossref(new window)

Putuhena, W. M., and I. Cordery, 2000: Some hydrological effects of changing forest cover from eucalypts to pinus radiate. Agricultural and Forest Meteorology 100, 59-72.crossref(new window)