한국농림기상학회지, 제 13권 제2호(2011) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 2, (2011), pp. 56~68
DOI: 10.5532/KJAFM.2010.13.2.056
ⓒ Author(s) 2014. CC Attribution 3.0 License.

산림에서의 젖은 군락 증발 관측:


Measurements of Wet Canopy Evaporation in Forests: A Review

National Center for Agro-Meteorology, Seoul National University, Seoul 151-742, Korea

Wet canopy evaporation (EWC) has been recognized as a significant component of total evapotranspiration, especially in forests and therefore it is critical to accurately assess EWC to understand forest hydrological cycle. In this review, I focused on the measurement methods and evaluating the magnitudes of EWC at diverse forest types (e.g., deciduous, coniferous, mixed, and rain forests). I also present the general issues to be considered for EWC measurements. The commonly used measurement methods for EWC include the water balance, energy balance, and the Penman-Monteith (PM) methods. The magnitudes of EWC ranged from 5 to 54% of precipitation based on the literature review, showing a large variation even for a similar forest type possibly related to canopy structure, rainfall intensity, and other meteorological conditions. Therefore, it is difficult to draw a general conclusion on the contribution of EWC to evapotranspiration from a particular forest type. Errors can arise from the measurements of precipitation (due to varying wind effect) and throughfall (due to spatial variability caused by canopy structure) for water balance method, the measurements of sensible heat flux and heat storage for energy balance method, and the estimation of aerodynamic conductance and unaccounted sensible heat advection for the PM method. For a reliable estimation of EWC, the combination of ecohydrological and micrometeorological methods is recommended.

Keyword: Evaporation, Wet canopy, Water balance, Energy balance, Penman-Monteith, Forest



산림에서의 차단강수증발(EWC)은 증발산과 강수에 중요한 기여를 한다. 따라서, 산림에서의 수문순환을 이해하기 위해서는 정확한 EWC를 산정하는 것이 중요하다. 본 고찰에서는 EWC의 측정방법을 소개하고, 선행연구에서 보고된 산림형태(예를 들면, 활엽수림, 침엽수림, 혼효림, 열대림)에 따른 EWC 값과 측정시 고려해야 할 사항에 대하여 논의하였다. 전형적인 EWC 측정에는 물 수지, 에너지 수지 및 Penman-Monteith 방법이 있다. 전반적으로, EWC는 강수량의 5~54%를 차지하였으며, 같은 산림형태내에서도 EWC의 강수량에 대한 기여도는 큰 변동을 보였다. 이러한 변동에는 강수강도, 기상조건, 군락 구조 특성이 영향을 미치는 것으로 나타났다. 따라서 특정 산림형태에서의 EWC의 강수량에 대한 기여도를 정량화하는 것은 어려울 것으로 판단된다. 관측시 발생하는 오차는 EWC 정량화의 불확실성을 증대 시킨다. 물수지 방법의 경우, 풍속의 영향을 받는 강수 관측과 군락 구조의 공간적 비균질성의 영향을 받는 수관통과우 등의 관측 오차를 들 수 있다. 에너지 수지 방법의 경우에는 현열 플럭스와 열저류항의 관측이 주요 오차의 원인이 되며, Penman-Monteith 방법은 공기전도도와 현열의 이류 추정에서 발생하는 오차에 주의를 기울여야 한다. 각 측정방법의 오차를 최소화하고 신뢰할 수 있는 EWC를 얻기위해서는 수문학적 방법과 미기상학적 방법, 즉 물 수지와 에너지 수지 방법을 함께 사용하는 것이 바람직하다.


Asdak, C., P. G. Jarvis, and P. V. Gardingen, 1998: Evaporation of intercepted precipitation based on an energy balance in unlogged and logged forest areas of central Kalimantan, Indonesia. Agricultural and Forest Meteorology 92, 173-180.crossref(new window)

Crockford, R. H., and D. P. Richardson, 2000: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14, 2903-2920.

Davis, T. S., J. H. C. Gash, F. Valente, J. S. Pereira, M. I. Ferreira, and J. S. David, 2006: Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydroogical Processes 20, 2713-2726.crossref(new window)

De Bruin, H. A. R., and O. K. Hartogensis, 2005: Variance method to determine fluxes of momentum and sensible heat in the stable atmospheric surface layer. Boundary-Layer Meteorology 116, 385-392.crossref(new window)

De Bruin, H. A. R., W., Kohsiek, and B. J. J. M., van den Hurk, 1993: A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities. Boundary-Layer Meteorology 63, 231-257.crossref(new window)

Dingman, S., 2002: Physical Hydrology. Prentice Hall, Upper Saddle River. c.

Finnigan, J., 2006: The storage term in eddy flux calculations. Agricultural and Forest Meteorology 136, 108-113.crossref(new window)

Gash, J. H. C., 1979: An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society 105, 43-55.crossref(new window)

Gash, J. H. C., C. R. Lloyd, and G. Lachaud, 1995: Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology 170, 79-86.crossref(new window)

Gash, J. H. C., F. Valente, and J. S. David, 1999: Estimates and measurements of evaporation from wet, sparse pine forest in Portugal. Agricultural and Forest Meteorology 94, 149-158.crossref(new window)

Gash, J. H. C., I. R. Wright, and C. R. Lloyd, 1980: Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology 48, 89-105.crossref(new window)

Herbst, M., P. T. W. Rosier, D. D. McNeil, R. J. Harding, and D. J. Gowing, 2008: Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology 148, 1655-1667.crossref(new window)

Herrington, L.P., 1969: On temperature and heat flow in tree stems. Yale University, School of Forestry and Envornmental Bulletin, 73.

Horton, R. E., 1919: Rainfall interception. U.S. Monthly Weather Review. 47.

Kang, M., H. Kwon, J.-H. Lim, and J. Kim, 2010: On estimating wet canopy evaporation from deciduous forest in Korea. The International Conference of 2nd Hydrology delivers Earth System Science to Society, The University of Tokyo, Japan, June 22-25, 2010.

Kang, M., H. Kwon, J.-H. Lim, and J. Kim, 2010: On estimating wet canopy evaporation from deciduous and coniferous forest in Korea. Journal of Hydrological Metrology (in revision).

Kim, K. B., and B. M. Woo, 1988: Study on rainfall interception loss from canopy in forest (I). Journal of Korean Forest Society 77, 331-337. (in Korean with English abstract)

Kim, K. H., J. Jun, J. Yoo, and Y. Jeong, 2005: Troughfall, stemflow and interception loss of the natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young minxed Forest in Yangju, Gyeonggido(I) – with a special reference on the results of measurement -. Journal of Korean Forest Society 94, 488-495. (in Korean with English abstract)

Klassen, W., F. Bosveld, and E. de Water, 1998: Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology 212-213, 36-50.crossref(new window)

Lankreijer, H. J. M., M. J. Hendriks, and W. Klaassen, 1993: A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology 64, 187-199.crossref(new window)

Lee, D. K., G. T., Kim, K. Y. Joo, Y. S. Kim, 1997: Throughfall, stemfall and rainfall interception loss in Pinus koraiensis Sieb. et Zucc., Larix leptolepis (Sieb. et Zucc.) Gordon and Quercus species stand at Kwangju-Gun, Kyunggido. Journal of Korean Forest Society 86, 200-207. (in Korean with English abstract)

Lindroth, A., 1991: Reduced Loss in Precipitation Measurements Using a New Wind Shield for Raingages. Journal of Atmospheric and Oceanic Technology 8, 444-451.

Lloyd, C. R., and A., De O. Marques, 1988: Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology 42, 63-73.crossref(new window)

Johnson, R., 1990: The interception, throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forests in the UK. Journal of Hydrology 118, 281-287.crossref(new window)

Min, H. J., and B. M. Woo, 1995: Throughfall, stemflow, and interception loss at Pinus taeda and Pinus densiflora stands. Journal of Korean Forest Society 84, 502-516. (in Korean with English abstract)

Michiles, A. A. S., and R. Gielow, 2008: Above-ground thermal energy storage rates, trunk heat fluxes and surface energy balance in a central Amazonian rainforest. Agricultural and Forest Meteorology 148, 917-930.crossref(new window)

Monteith, J. L., 1965: Evaporation and environment. Symposia Society for Experimental Biology 19, 205-224.

Muzylo, A., P. Llorens, F. Valente, J. J. Keizer, F. Domingo, and J. H. C. Gash, 2009: A review of rainfall interception modeling. Journal of Hydrology 370, 191-208.crossref(new window)

Oliphant, A. J., C. S. B. Grimmond, H. N. Zutter, H. P. Schmid, H.-B. Su, S. L. Scott, B. Offerle, J. C. Randolph, and J. Ehman, 2004: Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology 126, 185-201.crossref(new window)

Pypker, G. T., B. J. Bond, T. E. Link, D. Marks, and M. H. Unsworth, 2005: The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology 130, 113-129.crossref(new window)

Rutter, A. J., A. J. Morton, and P. C. Robins, 1975: A predictive model of rainfall interception in forest. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology 12, 367-380.crossref(new window)

Schellekens, J., L. A. Bruijnzeel, F. N. Scatena, N.J. Bink, and F. Holwerda, 2000: Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico. Water Resources Research 36, 2183-2196.crossref(new window)

Shachnovich, Y., P. R. Berliner, and P. Bar, 2008: Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. Journal of Hydrology 349, 168-177.crossref(new window)

Silberstein, R., A. Held, T. Hatton, N. Viney, and M. Sivapalan, 2001: Energy balance of a natural jarrah (Eucalyptus marginata) forest in Western Australia: measurements during the spring and summer. Agricultural and Forest Meteorology 109, 79-104.crossref(new window)

Singh, R. P., 1987: Rainfall interception by Pinus Wallichiana plantation in temperate region of Himachal Pradesh, India. Indian Forester 113, 559-566.

Sraj, M., M. Brilly, and M. Mikos, 2008: Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology 148, 121-134.crossref(new window)

Staelens, J., A. De Schrijver, K. Verheyen, and N. E. C. Verhoest, 2008: Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes 22, 33-45.crossref(new window)

Stewart, J. B., 1977: Evaporation from the wet canopy of a pine forest. Water Resources Research 13, 915-921.crossref(new window)

Tillman, J. E., 1972: The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. Journal of Applied Meteorology 11, 783-792.

Thom, A. S., 1975: Momentum, mass and heat exchange of plant communities. In: Monteith, J. L. (Ed.), Vegetation and the Atmosphere, Principles, Academic Press, London, UK pp 57-109.

Valente, F., J. S., David, and J. H. C. Gash, 1997: Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology 190, 141-162.crossref(new window)

van der Tol, C., J. H. C. Gash, S. J. Grant, D. D. McNeil, and M. Robinson, 2003: Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation-energy balance technique. Journal of Hydrology 276, 12-19.crossref(new window)

Vugts, H. F., M. J. Waterloo, F. J. Beekman, K. F. Frumau, and L. A. Bruijnzeel, 1993: The temperature variance method, a powerful tool in the estimation of actual evapotranspiration rates. Hydrology of Warm Humid Regions, Proceedings of the Yokohama Symposium, International Association of Hydrological Sciences Publication 216, 251-260.

Vermimmen, R. R. E., L. A. Bruijnzeel, A. Romdoni, and J. Proctor, 2007: Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia. Journal of Hydrology 340, 217-232.crossref(new window)