한국농림기상학회지, 제 13권 제1호(2011) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 1, (2011), pp. 20~27
DOI: 10.5532/KJAFM.2011.13.1.020
ⓒ Author(s) 2014. CC Attribution 3.0 License.


북한지역의 소기후 추정을 위한 수문단위 설정

김진희(1), 윤진일(2)
(1)(재)국가농림기상센터, (2)경희대학교 생태시스템공학과

(2011년 03월 13일 접수; 2011년 03월 26일 수정; 2011년 03월 28일 수락)

Zoning Hydrologic Units for Geospatial Climatology
in North Korea

Jin-Hee Kim(1), Jin I. Yun(2)
(1)National Center for Agro-Meteorology, Seoul National University, Seoul 151-742, Korea
(2)Department of Ecosystem Engineering, Kyung Hee University, Yongin 446-701, Korea

(Received March 13, 2011; Revised March 26, 2011; Accepted March 28, 2011)

ABSTRACT
High-definition, geo-referenced digital climate maps can be produced by applying watershed-specific modules to adjust synoptic observations for local effects including cold air drainage. Since there is no information available on North Korean watersheds, existing geospatial technology for digital climate mapping cannot be transferred to North Korea. We applied a watershed extraction algorithm based on ArcHydro to the North Korean portion of ASTER GDEM and utilized geographical information on major rivers and mountains to adjust the products. Proposed hydrologic zoning system for North Korean watersheds consists of 21 river basins, 93 stream basins and 885 catchments. Combined with the existing 840 South Korean hydrologic units, we now have a complete set of 1,725 catchments which may serve a framework for digital climate modeling across whole land area of the Korean Peninsula.

Keyword: Digital climate map, North Korean watershed, Hydrologic unit, Watersheds

MAIN

적요

북한지역에 대해 좌표내장 수치기후지도를 제작하기위한 선결조건으로서 국지 소기후 추정모형의 최소 공간적용단위인 표준유역(Hydrologic Unit)이 설정되어야 한다. Arc Hydro 기반의 유역추출 알고리즘을 ASTERGDEM에 적용하고, 북한의 5대강(예성강, 대동강, 청천강, 압록강, 두만강) 및 산경도에 나타난 산맥체계에 의해 보완함으로써 신뢰성 높은 북한지역 표준유역도를 제작하였다. 이 표준유역도에 의하면 북한지역은 21개의 대권역, 93개의 중권역, 885개의 소유역으로 구성된다. 기존 남한 표준유역도 840개와 결합하고 각각 소기후모형을 적용할 경우 한반도 전역을 1,725개의 소기후구로 하는 상세 농업기후지대구분이 가능해진다.

REFERENCES

Hellweger, F., 1997: AGREE – DEM Surface ReconditioningSystem. The University of Texas, Austin, TX, USA.

Jenson, S. K., and J. O. Dominique, 1988: Extractingtopographic structure from digital elevation model data forgeographic information system analysis. PhotogrammetricEngineering and Remote Sensing 54, 1593-1600.

Jung, I. K., and S. J. Kim, 2003: Comparison of DEMPreprocessing Method for Efficient Watershed andStream Network Extraction. Journal of Korean Societyof Civil Engineering 23, 393-400. (In Korean withEnglish abstract)

Kim, N. S., 2009: Updating DEM for Improving GeomorphicDetails. Journal of the Korean Association of GeographicInformation Studies 12, 64-72. (In Korean with Englishabstract)

Martz, L. W., and E. D. Jong, 1988: Catch: a FORTRANprogram for measuring catchment area from digitalelevation models. Computers and Geosciences 14, 627-640.crossref(new window)

Pfafstetter, O., 1989: Classification of hydrographic basins:coding methodology. Unpublished manuscript, DepartamentoNacional de Obras de Saneamento, August 18, 1989,Rio de Janeiro.

Saunders, W. K., and D. R. Maidment, 1995: Grid-Basedwatershed and stream network delineation for the SanAntonio – Nueces Coastal Basin, Proceedings of TexasWater ’95, Texas Section, American Society of CivilEngineers, San Antonio, Texas, 339-348.

Sung, D. G., and G. S. Cho, 2002: A Study on theExtraction of Watershed and Stream Network in usingBurnDEM. Journal of Korean Society of Civil Engineering22, 293-301. (In Korean with English abstract)

Yun, J. I., 2010: Agroclimatic maps augmented by a GIStechnology. Korean Journal of Agricultural and ForestMeteorology 12, 63-73. (In Korean with English abstract)

농어촌연구원, 2005: 북한의 농업기반정보 관리시스템 구축(II). 한국농어촌공사, 300pp.