한국농림기상학회지, 제 14권 제4호(2012) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 4, (2012), pp. 207~221
DOI: 10.5532/KJAFM.2012.14.4.207
ⓒ Author(s) 2014. CC Attribution 3.0 License.


생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및
적응기술 평가

이충근(1), 김준환(1), 손지영(1), 양운호(1), 윤영환(1), 최경진(1), 김광수(2)
(1)농촌진흥청 국립식량과학원, (2)서울대학교 농업생명과학대학

(2012년 10월 15일 접수; 2012년 11월 16일 수정; 2012년 11월 26일 수락)

Impacts of Climate Change on Rice Production and Adaptation
Method in Korea as Evaluated by Simulation Study

Chung-Kuen Lee(1), Junwhan Kim(1), Jiyoung Shon(1), Woon-ho Yang(1), Young-Hwan Yoon(1), Kyung-Jin Choi(1), Kwang-Soo Kim(2)
(1)National Institute of Crop Science, RDA, Suwon 441-857, Korea
(2)Department of Plant Science. Seoul Nat’l Univ. Seoul 151-742, Korea

(Received October 15, 2012; Revised November 16, 2012; Accepted November 26, 2012)

ABSTRACT
Air temperature in Korea has increased by 1.5oC over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, CO2 fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, CO2 fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the CO2 fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of CO2 fertilization, which improves weather condition during the grain-filling period.

Keyword: Rice, Climate change, Yield, Warming, CO2 fertilization, Cropping season

MAIN

적요

본 연구에서는 작물모형을 이용하여 기후변화에 따른 우리나라의 벼 생산성 변화를 분석하고, 기후변화 주요 변동요인인 온도 및 CO2 농도와 적응수단인 재배시기가 기후변화에 따른 벼 생산성 변화에 미치는 영향을 분석하고자 하였다.
작물모형은 영화수 및 임실율 모델을 모델을 도입하고, 종실중 및 등숙율 모듈을 추가하여 벼 수량결정 방법을 개선한 ‘ORYZA2000’을 사용하였으며, 모델의 입력자료인 품종특성 모수는 벼 생태형별로 종생종인 오대벼, 중생종인 화성벼, 중만생종인 일품벼의 품종특성 모수를 사용하였으나 발육속도 품종특성 모수는 수정하여 사용하였다.
생육모의 지역은 기상청 소속 기상대와 관측소가 소재하는 지역 중에 30년 이상 기상관측자료를 보유하고 있는 56개 지역을 북부, 중부, 남부의 3개 기후지대로 구분하여 분석하였으며, 기후변화에 따른 재배시기 조정여부는 최적파종기를 기준으로 설정하였는데, 출수후 40일간의 평균온도가 22.5가 되는 파종기를 지역별 최적파종기로 설정하였다.
기상자료는 1981~2010년을 기준년도로 하여 기상연구소에서 제작한 2011~2100년 기간의 3개 평년(2011~2040, 2041~2070, 2071~2100)의 A1B 기후시나리오에 근거하여 일별 기후자료로 작성하였으며, 생육모의 조건은 기준년도(1981~2010)를 기준으로 온도 및 CO2 농도만 변화를 주거나 기후변화에 따라 온도, CO2 농도 및 재배시기 등 다양한 변화를 주었다.
생육모의 결과 기준년도(1981~2010)를 기준으로 온도만 변화를 주었을 경우 1oC 온도 상승에 따라 벼수량은 6.7~10.6%까지 감소하였으며, CO2 농도만 변화를 주었을 때는 100ppm CO2 농도 증가에 따라 1.0~2.7% 증가하였다. 벼 생산성은 벼 생태형 및 기후지대별로 다소 차이가 있었다.
재배시기를 고정하였을 때 기후변화에 따른 벼 수량의 증감율은 조생종에서 -0.3~-23.4, 중생종에서 -1.9~-27.3, 중만생종에서 -1.7~-28.6%이었으며, 재배시기를 조정하였을 때는 조생종에서 3.3~-0.2, 중생종에서 1.8~-5.9, 중만생종에서 2.3~-7.4%로 조중생종에 비해 중만생종의 수량 감소율이 컸으며, 재배시기 조정여부에 따른 벼 생산성 변화의 차이가 컸다.
기상환경 및 재배 요인 중 기후변화에 따른 벼 생산성 변화에 대한 기여도는 기후온난화가 59.8%로 가장 크며, 재배시기 11.8, CO2 비료효과 9.7, 벼 생태형1.7%의 순이었다. 온도와 재배시기의 상호작용 효과는 1.5%이었으며, 그 외 모든 상호작용 효과는 1% 이내로 생산성 변화에 거의 영향을 주지 못하였다.
수량관련 생육형질 중 기후변화에 따른 벼 생산성에 대한 기여도는 재배시기가 고정되었을 경우 영화수가 13.5~45.8%, 등숙율이 53.1~86.2%였으며, 재배시기를 변경할 경우 영화수는 46.2~78.3%, 등숙율은 21.6~53.4%로 재배시기 여부에 따른 수량관련 생육형질의 기여도에 큰 차이를 보였으며, 벼 생태형간에도 다소 차이가 있었다. 그러나 임실율은 벼 수량에 거의 영향을 주지 못했다.

REFERENCES

Bachelet, D., J. Kern, and M. Tolg, 1995: Balancing the rice carbon budget in China using spatially-distributed data. Ecological Modelling 79 (1), 167-177.crossref(new window)

Baker, J. T., 2004: Yield responses of southern US rice cultivars to $CO_{2}$ and temperature. Agricultural and Forest Meteorology 122, 129-137.crossref(new window)

Baker, J. T., L. H. Allen Jr, and K. J. Boote, 1992: Temperature effects on rice at elevated $CO_{2}$ concentration. Journal of Experimental Botany 43, 959-964.crossref(new window)

Bouman, B. A. M., M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, and H. H. van Laar, 2001: ORYZA2000: modeling lowland rice. Los Banos (Philippines); International Rice Research Institute, and Wageningen: Wageningen University and Research Centre. 235p.

Chung, U., K. S. Cho, and B. W. Lee, 2006: Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8(4), 229-241. (in Korean with English abstract)

Cui, R. X., and B. W. Lee, 2002: Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science 47(5), 390-394. (in Korean with English abstract)

Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler, 2007: High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58, 1627- 1635.crossref(new window)

Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada, M. W. Mitchell, and M. Gumpertz, 2003: Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83, 261-270.crossref(new window)

Kondo, M., 2009: Effect of global warming on rice culture and adoptive strategies. International symposium ‘Rice research in the era of global warming’ 1-9pp.

Krishnan, P., D. K. Swain, C. Bhaskar, S. K. Nayak, and R. N. Dash, 2007: Impact of elevated $CO_{2}$ and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment 122, 233-242.crossref(new window)

Lee, B. W., J. C. Shin, and J. H. Bong, 1991: Impact of climate change induced by the increasing atmosphere $CO_{2}$ concentration on agroclimatic resources, net primary productivity and rice yield potential in Korea. Korean Journal of Crop Science 36(2), 112-126. (in Korean with English abstract)

Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Shon, and W. H. Yang, 2011: Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Growing Temperature in Different Rice Maturity Types. Korean Journal of Crop Science 56(3), 233-243. (in Korean with English abstract)crossref(new window)

Mall, R. K., and P. K. Aggarwal, 2002: Climate change and rice yields in diverse agro-environments of India. I. Evaluation of impact assessment models. Climatic Change 52, 315-330.crossref(new window)

Matsui, T., O. S. Namuco, L. H. Ziska, and T. Horie, 1997: Effects of high temperature and $CO_{2}$ concentration on spikelet sterility in indica rice. Field Crops Research 51, 213-219.crossref(new window)

Matthews, R. B., M. J. Kropff, T. Horie, and D. Bachelet, 1997: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54, 399-425.crossref(new window)

NIMR, 2004: The development of regional climate change scenario for the national climate change report.. NIMR Report, 510p.

NIMR, 2007: The application of regional climate change scenario for the national climate change report (III). NIMR Report, 599p.

NIMR, 2011: Cliamate change scenario report for 5th IPCC report. NIMR NIMR Report.

Ohe, I., K. Saitoh, and T. Kuroda, 2007: Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science 10, 412-422.crossref(new window)

Peng, S., H. Jianliang, J. E. Sheehy, R. C. Laza, R. M. Visperas, Z. Xuhua, H. G. S. Centeno, G. S. Khush, and K. G. Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101, 9971-9975.crossref(new window)

Sakai, H., T. Hasegawa, and K. Kobayashi, 2006: Enhancement of rice canopy carbon gain by elevated $CO_{2}$ is sensitive to growth stage and leaf nitrogen concentration. New Phytologist 170, 321-332.crossref(new window)

Sasaki, H., T. Hara, S. Ito, N. Uehara, H. Y. Kim, M. Lieffering, M. Okada, and K. Kobayashi, 2007: Effect of free-air $CO_{2}$ enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crops Research 100, 24-31.crossref(new window)

Seo, B. S., D. N. Nguyen, and B. W. Lee, 2010: A simulation model to predict the stability model induced by high temperature during reproductive stage of rice. Proceeding of 40th biological systems simulation conference.

Sheehy, J. E., P. L. Mitchell, and A. B. Ferrer, 2006: Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Research 98, 151-156.crossref(new window)

Shen, S. H., S. B. Yang, Y. X. Zhao, Y. L. Xu, X. Y. Zhao, Z. Y. Wang, J. Liu, and W. W. Zhang, 2011: Simulating the rice yield change in the middle and lower reaches of the Yangtze River under SRES B2 scenario. Acta Ecologica Sinica 31, 40-48.crossref(new window)

Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131.

Shim, K. M., D. B. Lee, S. H. Min, G. Y. Kim, H. C. Jeong, S. B. Lee, and K. K. Kang, 2011: Assessing impacts of temperature and carbon dioxide based on A1B climate change scenario on potential yield of winter covered barley in Korea. Climate Change Research 2(4), 317- 331.

Shin, J. C., and M. H. Lee, 1995: Rice production in south Korea under current and future climates. In: R. B. Matthews, M. J. Kropff, D. Bachelet, and H. H. van Laar (Eds). Modeling the impact of climate change on rice production in Asia. IRRI & CAB International, Wallingford, UK. 199-215.

Yang, L. X., J. Y. Huang, H. J. Yang, G. C. Dong, G. Liu, J. G. Zhu, and Y. L. Wang, 2006: Seasonal changes in the effects of free-air $CO_{2}$ enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research 98, 12-19.crossref(new window)

Yoshida, S., 1973a: Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Science and Plant Nutrition 19, 299-310.crossref(new window)

Yoshida, S., 1973b: Effects of $CO_{2}$ enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Science and Plant Nutrition 19, 311-316.crossref(new window)

Ziska, L. H., P. A. Manalo, and R. A. Ordonez, 1996: Intraspecific variation in the response of rice (Oryza sativa L.) to increased $CO_{2}$ and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47, 1353-1359.crossref(new window)