한국농림기상학회지, 제 14권 제2호(2012) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 2, (2012), pp. 63~70
DOI: 10.5532/KJAFM.2012.14.2.063
ⓒ Author(s) 2014. CC Attribution 3.0 License.


온도 증가에 따른 일본잎갈나무와 거제수나무 유묘의 초기
생장과 생리 특성의 변화

한심희(1), 김두현(1), 김길남(1), 이재천(1), 윤충원(2)
(1)국립산림과학원 산림유전자원부, (2)국립공주대학교 산림자원학과

(2011년 11월 24일 접수; 2012년 03월 21일 수정; 2012년 06월 01일 수락)

Changes on Initial Growth and Physiological Characteristics of
Larix kaempferi and Betula costata Seedlings under
Elevated Temperature

Sim-Hee Han1, Du-Hyun Kim1, Gil Nam Kim1, Jae-Cheon Lee1, Chung-Weon Yun2
(1)Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Korea
(2)Department of Forest Resource, Kongju National University, Yesan 340-702, Korea

(Received November 24, 2011; Revised March 21, 2012; Accepted June 01, 2012)

ABSTRACT
Larix kaempferi and Betula costata seedlings were grown under an elevated temperature (27oC) for four weeks to understand initial changes on physiological characteristics caused by temperature rising in connection with global warming. At the end of the treatment, growth performance, leaf pigment content, antioxidative enzyme activities and malondialdehyde (MDA) content were measured and analyzed. Relative growth rates of the height of two tree species grown under elevated temperature (27oC) were lower than those of control (24oC) and dry weights of leaves, stems and roots were also reduced at higher temperature. Particularly, the root growth reduction of two tree species increased markedly at 27oC over the study period, which increased the ratio of shoot to root. Under higher temperature, leaf pigment contents decreased, whereas anti-oxidative enzyme activities such as ascorbate peroxidase (APX) and catalase (CAT) increased as compared with the control. But MDA content was not affected by elevated temperature. In conclusion, the elevated temperature leads to root growth reduction, restriction of nutrient uptake from soil and the reduction of leaf pigment contents, which can inhibit the aboveground growth. In addition, higher temperature might act as a stress factor that causes growth reduction through the increase of energy consumption during a growth period.

Keyword: Larix kaempferi, Betula costata, Growth, Relative growth rate, Leaf pigment, Antioxidative enzyme

MAIN

적요

지구온난화 현상과 관련하여 온도 상승에 따른 수목의 초기 생리 반응 변화를 이해하기 위하여, 일본잎갈나무와 거제수나무 유묘를 24oC와 27oC에서 4주간 키운 후, 이들의 생장, 광색소 함량, 항산화효소 활성 및 MDA 함량을 조사·분석하였다. 높은 온도(27oC)에서 생장한 두 수종의 수고 상대생장률은 대조구에 비해 낮았으며, 잎, 줄기, 뿌리의 건중량도 모두 낮았다. 특히 뿌리의 생장 감소는 시간이 지나면서 뚜렷하게 증가하였으며, 이로 인해 지상부와 지하부의 비는 높은 온도에서 증가하였다. 광색소 함량은 두 수종 모두 온도 증가로 감소하였으며, 항산화효소인 APX와 CAT의 활성은 높은 온도에서 증가하였다. 그러나 MDA 함량은 온도 변화에 영향을 받지 않았다. 결론적으로, 수목의 생육 온도 증가는 생육 초기에 뿌리의 생장을 감소시켜 양료흡수를 제한하며, 엽록소 함량 감소와 지상부의 생장을 방해할 수 있다. 또한 온도 증가는 수목의 생장 기간 동안 스트레스 요인으로 작용하여 에너지의 소모를 증가 시켜 생장 감소를 초래할 수 있다.

REFERENCES

Anderson, M. D., T. K. Prasad, and C. R. Stewart, 1995: Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant physiology 109, 1247-1257.

Beadle, C. L., 1993: Growth analysis. Photosynthesis and production in a changing environment, a filed and laboratory manual. D. O. Hall, J. M. O. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegood, and S. P. Long (Eds.), Chapman Hall, London, 36-46.

Ceulemans, R. and Mousseau, M., 1994. Effects of elevated atmospheric $CO_{2}$ on woody plants: a review. New Phytologist 127, 425-446.crossref(new window)

Chen, H., P. T. Rygiewicz, M. G. Johnson, M. E. Harmon, H. Tian, and J. W. Tang, 2008: Chemistry and long-term decomposition of roots of Douglas-Fir grown under elevated atmospheric carbon dioxide and warming conditions. Journal of Environmental Quality 37, 1327-1336.crossref(new window)

Elstner, E. F., 1982. Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology 33, 73-96.crossref(new window)

Gabara, B., M. Sklodowska, A. Wyrwicka, S. Glinska, and M. Gapinska, 2003: Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain. Plant Science 164, 507-516.crossref(new window)

Geissler, N., S. Hussin, and H. W. Koyro, 2009: Interactive effects of NaCl salinity and elevated atmospheric $CO_{2}$ concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany 65, 220-231.crossref(new window)

Ghannoum, O., N. G. Phillips, J. P. Conroy, R. A. Smith, R. D. Attard, R. Woodfield, B. A. Logan, J. D. Lewis, and D. T. Tissue, 2010: Exposure to preindustrial, current and future atmospheric $CO_{2}$ and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16, 303-319.crossref(new window)

Hamid, N., F. Jawaid, and D. Amin, 2009. Effect of shortterm exposure to two different carbon dioxide concentrations on growth and some biochemical parameters of edible beans (Vigna radiate and Vigna unguiculata). Pakistan Journal of Botany 41, 1831-1836.

Han, S. H., D. H. Kim, J. C. Lee, and P. G. Kim, 2009: Effects of fertilization on physiological parameters in American sycamore (Platanus occidentalis) during ozone stress and recovery phase. Journal of Ecology and Field Biology 32, 149-158.crossref(new window)

Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560.

Hattenschwiler, S., F. Miglietta, A. Rasch, and S. Korner, 1997: Thirty years of in situ tree growth under elevated $CO_{2}$: a model for future responses? Global Change Biology 3, 463-471.crossref(new window)

Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.crossref(new window)

Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334.crossref(new window)

Hodges, D. M., C. J. Andrews, D. A. Johnson, and R.I. Hamilton, 1997: Antioxidant enzymes responses to chilling stress in differentially sensitive inbred maize lines. Journal of Experimental Botany 48, 1105-1113.crossref(new window)

Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citurs plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131.crossref(new window)

IPCC. 2007. Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

Johnson, M. G., P. T. Rygiewicz, D. T. Tingey, and D. L. Phillips, 2006: Elevated $CO_{2}$ and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytologist 170, 345-356.crossref(new window)

Kanemoto, K., Y. Yamashita, T. Ozawa, N. Imanishi, N. T. Nguyen, R. Suwa, P. K. Mohapatra, S. Kanai, R. E. Moghaieb, J. Ito, H. Elshemy, and K. Fujita, 2009: Photosynthetic acclimation to elevated $CO_{2}$ is dependent on N partitioning and transpiration in soybean. Plant Science 177, 398-403.crossref(new window)

Kellomäki, S., T. Karjalainen, and H. Vaisanen, 1997: More timber from boreal forests under changing climate? Forest Ecology and Management 94, 195-208.crossref(new window)

Kilpelainen, A., H. Peltola, A. Ryyppo, K. Sauvala, K. Laitinen, and S. Kellomaki, 2004: Wood properties of Scots pine (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23, 889-897.

Kim, D. H., S. H. Han, J. J. Ku, K. Y. Lee, and P. G. Kim, 2008: Physiological and biochemical responses to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10, 47-57.crossref(new window)

Kim, H. R., and Y. H. You, 2010: Effects of elevated $CO_{2}$ concentration and increased temperature on leaf relatedphysiological responses of Phytolacca insularis (native species) and Phytolacca Americana (invasive species). Journal of Ecology and Field Biology 33, 195-204.crossref(new window)

Korea Meteorological Administration (KMA), 2011: Summary of Korea Global Atmosphere Watch 2010 Report. KMA, 8pp.

Kratsch, H. A., and R. R. Wise, 2000: The ultrastructure of chilling stress. Plant, Cell and Environment 23, 337-350.crossref(new window)

Leakey, A. D. B., E. A., Ainsworth, C. J. Bernacchi, A. Rogers, S. P. Long, and D. R. Ort, 2009: Elevated $CO_{2}$ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60, 2859-2876.crossref(new window)

Lilley, J. M., T. P. Bolger, and R. M. Gifford, 2001: Productivity of Trifolium subterraneum and Phalaris aquatic under warmer, high $CO_{2}$ conditions. New Phytologist 150, 371-383.crossref(new window)

Loveys, B. R., I. Scheurwater, T. L. Pons, A. H. Fitter, and O. K. Atkin, 2002: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast and slow-growing plant species. Plant, Cell and Environment 25, 975-987.crossref(new window)

McGee, C. E., and D. L. Loftis, 1986: Planted oak perform poorly in North Carolina and Tennessee. Northern Journal of Applied Forestry 3, 114-116.

Matala, J., R. Ojansuu, H. Peltola, H. Raitio, and S. Kellomäki, 2006: Modelling the response of tree growth to temperature and $CO_{2}$ elevation as related to the fertility and current temperature sum of a site. Ecological Modelling 199, 39-52.crossref(new window)

Ministry of Environment, 2011: Korea climate change evaluation report 2011, 635pp.

Morison, J. I. L., and D. W. Lawlor, 1999: Interactions between increasing $CO_{2}$ concentration and temperature on plant growth. Plant, Cell and Environment 22, 659-682.crossref(new window)

Peltola, H., A. Kilpelainen, and S. Kellomaki, 2002: Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiology 22, 963-972.crossref(new window)

Rao, M. V., G. Paliyath, and D. P. Ormrod, 1996: Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110, 125-136.crossref(new window)

Rehfeldt, G. E., N. M. Tchebakova, and E. I. Parfenova, 2004: Genetic responses to climate and climate-change in conifers of the temperate and boreal forests. Recent Research Developments in Genetics and Breeding 1, 113-130.

Reich, P. B., and J. Oleksyn, 2008: Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology Letters 11, 588-597.crossref(new window)

Ryu, K. O., O. W Kwon, J. H. Song, and I. S. Kim, 2004: The variation of growth performance, timing of leaf burst, and leaf form among 23 provenances of Quercus rubra L. in Korea. Journal of Korean Forest Society 93, 235-241. (In Korean with English abstract)

Saxe, H., M. G. R. Cannell, B. Johnsen, M. G. Ryan, and G. Vourlitis, 2001: Tree and forest functioning in response to global warming. New Phytologist 149, 369-399.

Scholze, M., W. Knorr, N. W. Arnell, and I. C. Prentice, 2006: A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Science U.S.A., 103, 13116-13120.crossref(new window)

Velikova, V., I. Yordanov, and A. Edreva, 2000: Oxidative stress and some antioxidant systems in acid rain-treated bean plants; Protective role of exogenous polyamines. Plant Science 151, 59-66.crossref(new window)

Wan, S. Q., R. J. Norby, K. S. Pregitzer, J. Ledford, and E. G. O’Neill, 2004: $CO_{2}$ enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 162, 437-446.crossref(new window)

Wilmking, M., G. P. Juday, V. A. Barber, and H. S. J. Zald, 2004: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10, 1724- 1736.crossref(new window)