한국농림기상학회지, 제 14권 제1호(2012) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1, (2012), pp. 19~27
DOI: 10.5532/KJAFM.2012.14.1.019
ⓒ Author(s) 2014. CC Attribution 3.0 License.


수목의 장기 기후변화 연구시설: CO2 폭로용 상부 개방형 온실

이재천(1), 김두현(1), 김길남(1), 김판기(2), 한심희(1)
(1)국립산림과학원 산림유전자원부, (2)경북대학교

(2011년 11월 25일 접수; 2012년 01월 16일 수정; 2012년 02월 08일 수락)

Long-term Climate Change Research Facility for Trees:
CO2-Enriched Open Top Chamber System

Jae-Cheon Lee(1), Du-Hyun Kim(1), Gil Nam Kim(1), Pan-Gi Kim(2), Sim-Hee Han(1)
(1)Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Korea
(2)Department of Forest Resources and Environment, Kyungpook National University, Sangju, 742-711, Korea

(Received November 25, 2011; Revised January 16, 2012; Accepted February 08, 2012)

ABSTRACT
The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated CO2 levels (1.4x and 1.8x ambient CO2) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, CO2 concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, CO2 concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, 1.4x CO2-enriched OTC and 1.8x CO2-enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest (1.2~2.0oC) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of CO2 for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively.

Keyword: Climate change, OTC system, Carbon dioxide, Temperature, CO2 use

MAIN

적요

본 연구는 외국에서 이용해 왔던 기존의 상부 개방형 온실의 단점을 보완하여, 장기적인 연구가 요구되는 수목을 대상으로 설치한 상부 개방형 온실의 운영결과를 제공하고자 하는 것이다. 이 자료에는 이산화탄소의 농도 조절 능력 및 안정성을 비롯하여, 대기와 OTC 내부 간의 미세환경 차이에 대한 정보를 포함하고 있다. OTC 시설은 대조구인 OTC 외부 시험구, 대기와 동일 CO2 농도의 OTC 시험구, 대기 CO2 농도의 1.4배 증가시킨 OTC 시험구, 대기 CO2 농도의 1.8배 증가시킨 OTC 시험구로 구성되어 있다. 이 시설은 온실 6기, CO2 폭로장치 6기, CO2 제어장치 6기, 액화탄산가스 탱크 1기, 제어감시실 1실로 구성되어 있다. 온실 6기는 직경 10m, 높이 7m의 10각형구조물로 제작되었으며, 상부 개구율은 75% 이상을 유지하고 있다. CO2 폭로를 위해 16개 원통형 토출배관을 도입하였다. OTC의 평균 가동률은 2010년 6월에 94.2%로 가장 낮았으나, 7월 이후부터는 98% 이상의 가동률을 나타냈고, 2011년에는 100% 가동률을 보였다. 2010년과 2011년 모두 CO2 농도 조절결과는 목표 값에 도달하였으며, 2011년이 보다 안정된 값을 나타냈다. 2011년 무처리 OTC의 CO2 농도는 목표 값의 106%였으며, 1.4배 OTC는 목표 값의 100%, 1.8배 OTC는 목표 값의 94%였다. 대기와 OTC 내부의 온도는 오전 10시부터 오후 2시 사이에 차이가 가장 컸는데, 편차는 1.2~2.0oC를 기록했으나, OTC간 온도 차이는 크지 않았다. 대기와 OTC 내부간 상대 습도의 차이는 0.1~1% 사이로 매우 적었다. OTC를 운영하는데 사용된 CO2 가스 소비량은 2010년과 2011년 6월에 가장 많은 11.33톤과 17.04톤을 기록했다.

REFERENCES

Ainsworth, E.A., and S. P. Long, 2005: Tansley Review: What have we learned from 15 years of free-air $CO_{2}$ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising $CO_{2}$ . New Phytologist 165, 351-372.

Bindi, M., L. Fibbi, M. Lanini, and F. Miglietta, 2001: Free Air $CO_{2}$ Enrichment (FACE) of grapevine (Vitis vinifera L.): I. Development and testing of the system for $CO_{2}$ enrichment. European Journal of Agronomy 14, 135-143.crossref(new window)

Ceulemans, R., and M. Mousseau, 1994: Tansley Review No. 71. Effects of elevated atmospheric $CO_{2}$ on woody plants. New Phytologist 127, 425-446.crossref(new window)

Conway, T. and P. Tans, NOAA/ESRL. 2011: www.esrl.noaa.gov/gmd/ccgg/trends

Dabros, A., 2008: Effects of simulated climate change on postdisturbance Populus tremuloides-Picea mariana ecosystems in northwestern Quebec. PhD thesis, McGill University.

Dabros, A., and J. W. Fyles, 2010: Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant Soil 327, 465-479.crossref(new window)

Drake, B.G., and G. J. Peresta, 1993: Open top chambers for studies of the long-term effects of elevated atmospheric $CO_{2}$ on wetland and forest ecosystem processes. In: E. D. Schultze, and H. A. Mooney (Eds.) Design and execution of experiments on $CO_{2}$ enrichment, E. Guyot SA, Brussels, 273-289.

Ehleringer, J., R. Birdsey, R. Ceulemans, J. Melillo, J. Nosberger, W. Oechel, and S. Trumbore, 2006: Report of the BERAC subcommittee reviewing the FACE and OTC elevated $CO_{2}$ projects in DOE. BERAC Report, October 2006.

Heagle, A. S., D. E., Body, and W. W. Heck, 1973: An opentop field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality 2, 365-368.

Hendrey, G. R., D. S. Ellsworth, K. F. Lewin, and J. Nagy. 1999: A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric $CO_{2}$. Global Change Biology 5, 293-309.crossref(new window)

IPCC, 2007: Climate change 2007: The physical science basis, Cambridge University Press.

Kimball, B. A., S. B. Idso, S. J. Ohnson, and M. C. Rillig, 2007: Global seventeen years of carbon dioxide enrichment of sour orange trees: final results. Change Biology 13, 2171-2183.crossref(new window)

Lewin, K.F., G. Hendrey, J. Nagy, R. L. LaMorte, 1994: Design and application of a free air carbon dioxide facility. Agricultural and Forest Meteorology 70, 15-29.crossref(new window)

Moutinho-Pereira, J. M., E. A. Bacelar, B. Goncalves, H. F. Ferreira, J. F. Coutinho, and C. M. Correiam, 2010: Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines. Acta Physiol Plant 32, 395-403.crossref(new window)

Nagy, J., Lewin K.F., Hendrey G.R. Hassinger E. LaMorte R.L. 1994. Face facility $CO_{2}$ concentration control and $CO_{2}$ use in 1990 and 1991. Agricultural and Forest Meteorology 70, 31-48.crossref(new window)

Raison, J., D. Eamus, R. Gifford, and J. McGrath, 2007: Feasibility of forest free air $CO_{2}$ enrichment (FACE) experimentation in Australia. Australian Greenhouse Office, Department of the Environment and Water Resources, 108pp.

Rogers, H. H., W. W. Heck, and A. S. Heagle, 1983: A field technique for study of plant responses to elevated carbon dioxide concentrations. J. Air Pollut. Control Fed. 33, 42-44.crossref(new window)

World Meteorological Organization, 2011: The state of greenhouse gases in the atmosphere based on global observations through 2010. Greenhouse gas bulletin. No.7, 2-3.

Zhang, J. H., S. J. Han, and G. Z., 2005: Turbulence statistics of natural airflow within a large Open Top Chamber. Journal of Forestry Research, 16, 303-305.crossref(new window)