한국농림기상학회지, 제 15권 제4호(2013) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 15, No. 4, (2013), pp. 282~290
DOI: 10.5532/KJAFM.2013.15.4.282
ⓒ Author(s) 2014. CC Attribution 3.0 License.

Noah Multi Physics 모델과 CERES-Rice 모델의 작물 생육
및 증발산 모의 비교

김광수(1), 강민석(2), 정하늘(1), 김 준(1)
(1)서울대학교 농업생명과학대학, (2)(재)국가농림기상센터

(2013년 12월 13일 접수; 2013년 12월 28일 수정; 2013년 12월 28일 수락)

Comparison of Crop Growth and Evapotranspiration Simulations
between Noah Multi Physics Model and CERES-Rice Model

Kwangsoo Kim(1), Minseok kang(2), Haneul Jeong(1), Joon Kim(1)
(1)College of Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Korea
(2)National Center for Agro-Meteorology, Seoul National University, Seoul 151-742, Korea

(Received December 13, 2013; Revised December 28, 2013; Accepted December 28, 2013)

Biophysical and biochemical processes through which crops interact with the atmosphere have been simulated using land surface models and crop growth models. The Noah Multi Physics (MP) model and the CERES-Rice model, which are a land surface model, and a crop growth model, respectively, were used to simulate and compare rice growth and evapotranspiration (ET) in the areas near Haenam flux tower in Korea. Simulations using these models were performed from 2003 to 2012 during which flux measurements were obtained at the Haenam site. The Noah MP model failed to simulate the pattern of temporal change in leaf area index (LAI) after heading. The simulated aboveground biomass with the Noah MP model was underestimated by about 10% of the actual biomass. The ET simulated with the Noah MP model was as low as 21% of those with the CERES-Rice model. In comparison with actual ET measured at Haenam flux site, the root mean square error (RMSE) of the Noah MP model was 1.8 times larger than that of the CERES-Rice model. The Noah MP model seems to show less reliable simulation of crop growth and ET due to simplified phenology processes and assimilates partitioning compared with the CERES-Rice model. When ET was adjusted by the ratio between leaf biomass simulated using CERES-Rice model and Noah MP model, however, the RMSE of ET was reduced by 30%. This suggests that an improvement of the Noah MP model in representing rice growth in paddy fields would allow more reliable simulation of matter and energy fluxes.

Keyword: Crop growth, Evapotranspiration, Simulation, Land surface model, Crop growth model



대기와 지표면을 구성하고 있는 토양 및 식생은 생물리학적/생지화학적인 과정을 통해 서로 상호작용을 한다. 이러한 과정을 모의하기 위해 지표모델과 작물생육모델이 사용되고 있다. 지표모델인 Noah MP 모델과 작물생육모델인 CERES-Rice 모델을 비교하기 위해 해남 플럭스 관측소 인근 지역에서 작물의 생육과 증발산량을 모의하였다. 플럭스 관측자료가 수집된 2003년부터 2012년까지 해남 플럭스 관측소의 주요식생인 벼를 대상으로 생육과 증발산량을 모의되었다. Noah MP 모델은 단순한 식생 모의 과정으로 인해 개화기를 전후로 하는 벼의 LAI 변화양상을 정확하게 반영하지 못하였다. 벼의 생체중 예측에 있어서도 실제 관측될 수 있는 생체중보다 대략 10분의 1 수준에 해당하는 생체중이 모의되었다. 증발산량 모의의경우에도, CERES-Rice 모델의 모의값보다 약 21%에 해당하는 증발산량을 모의하였다. 반면, CERES-Rice 모델의 경우 LAI의 변화와 생체중 모의 값은 실제의 벼 생육 양상과 유사할 것으로 추정되었다. 또한, 증발산량의 경우에도 해남 플럭스 관측소에서 측정된 값과 비교하였을 때 Noah-MP모델의 모의값이 CERESRice 모델의 모의값에 비해 RMSE 값이 1.8배 높았다. Noah MP 모델이 보이는 높은 오차값들은 NoahMP모델이 논의 지표상태를 적절히 반영하지 못하였기 때문으로 사료되었고, 특히 과소추정된 생체중을 보정하여 증발산량을 예측할 경우 오차를 30%까지 줄일 수 있을 것으로 보인다. 따라서, Noah MP 모델에 논에서의 지표 특성을 반영할 수 있다면 보다 정확한 물질순환과 에너지 교환을 예측할 수 있을 것으로 사료된다.


Ackerly, D., 1999: Self-Shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia 119, 300-310.crossref(new window)

Dingkuhn, A., H. F. Schnier, S. K. D. Datta, E. Wijangco, and K. Dorffling, 1990: Diurnal and developmental changes in canopy gas exchange in relation to growth in transplanted and direct-seeded flooded rice. Australian Journal of Plant Physiology 17(2), 119-134. doi:10.1071/PP9900119crossref(new window)

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research 108, 8851, doi:10.1029/2002JD003296.crossref(new window)

Evans, J. R., H. Poorter, 2001: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment 24(8), 755-767. DOI: 10.1046/j.1365-3040.2001.00724.xcrossref(new window)

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18, 235-265.crossref(new window)

Kiniry, J. R., C. A. Jones, J. C. O’toole, R. Blanchet, M. Cabelguenne, and D. A. Spanel, 1989: Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Research 20(1), 51-64.crossref(new window)

Kang, M., S. Park, H. Kwon, H. T. Choi, Y. J. Choi, and J. Kim, 2009: Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. Asia-Pacific Journal of Atmospheric Sciences 45(2), 175-191.

Karaba, A., S. Dixit, R. Greco, A. Aharoni, K. R. Trijatmiko, N. Marsch-Martinez, A. Krishnan, K. N. Nataraja, M. Udayakumar, and A. Pereira, 2007: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences 104, 15270-15275.crossref(new window)

Kwon, H., J. Kim, and J. Hong, 2010: Influence of the asian monsoon on net ecosystem carbon exchange in two major plant functional types in Korea. Biogeosciences 7, 1493-1504.crossref(new window)

Lokupitiya, E., S. Denning, K. Paustian, I. Baker, K. Schaefer, S. Verma, T. Meyers, C. Bernacchi, A. Suyker, and M. Fischer, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve landatmosphere carbon exchanges from croplands. Biogeosciences 6, 969-986.crossref(new window)

Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21, 1303-1330.crossref(new window)

Niu, G. Y., Z. L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, A. Kumar, K. Manning, D. Niyogi, E. Rosero, M. Tewari, and Y. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with localscale measurements. Journal of Geophysical Research 116.

Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Reviews of Geophysics 39, 151-177.crossref(new window)

Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology 23, 479-510.crossref(new window)

Shibayama, M., and T. Akiyama, 1989: Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment 27(2), 119-127.crossref(new window)

Timsina, J., and E. Humphreys, 2006: Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review. Agricultural Systems 90, 5-31.crossref(new window)

Van den Hoof, C., E. Hanert, and P. L. Vidale, 2011: Simulating dynamic crop growth with an adapted land surface model-JULES-SUCROS: Model development and validation. Agricultural and Forest Meteorology 151(2), 137-153.crossref(new window)

Yang, J., and J. Zhang, 2010: Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany 61, 3177-3189.crossref(new window)