한국농림기상학회지, 제 15권 제2호(2013) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 15, No. 2, (2013), pp. 109~117
DOI: 10.5532/KJAFM.2013.15.2.109
ⓒ Author(s) 2014. CC Attribution 3.0 License.


선도적 농림기상 국제협력을 통한 농업과 식량안보분야
전지구기후 서비스체계 구축 전략

이병열(1), 페데리카 로씨(2), 레이몬드 모타(3), 로버트 스테판스키(4)
(1)(재)국가농림기상센터, (2)이탈리아 국가연구센터 생기상학연구소,
(3)미국 전구환경자연자원연구소, (4)세계기상기구

(2013년 06월 18일 접수; 2013년 06월 19일 수락)

Implementation Strategy of Global Framework for Climate Service
through Global Initiatives in AgroMeteorology for
Agriculture and Food Security Sector

Byong-Lyol Lee(1), Federica Rossi(2), Raymond Motha(3), Robert Stefanski(4)
(1)National Center for AgroMeteorology, CALS / Seoul National University, Seoul, 151-921 Korea
(2)Institute of Biometeorology, National Research Council, Bologna, 40129 Italy
(3)George Mason University, College of Science, Fairfax, Virginia, USA
(4)World Meteorological Organization, Geneva, Switzerland

(Received June 18, 2013; Accepted June 19, 2013)

ABSTRACT
The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing “Global Initiatives in AgroMeteorology” (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology – Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.

Keyword: GFCS, Climate service, GIAM, Climate change, Food security, Agriculture

MAIN

적요

“전지구기후서비스체계” (GFCS)는 2009년 제3차 세계기후회의에서 기후변화 대응 취약 국가와 소외계층에 대해 보다 효율적인 기후정보를 제공하기 위한 전지구차원의 서비스 제공체계 구축 필요성에 대한 공감을 바탕으로 제안되어, 현재 세계기상기구를 중심으로 관련 UN 및 국제기구간 공조를 통해 향후 약 10년 동안에 걸쳐 이를 이행하기 위한 노력을 기울일 예정이다. GFCS는 과학적 기후정보와 기후예측을 기후변화 적응과 기후위기관리를 상호 연계할 수 있는 기후서비스 개발을 주도하게 된다. GFCS의 기본구조는 5개 주요요소로 구성되어 있는데, 이에는 관측/모니터링, 연구/모형/예측, 기후서비스정보시스템 및 사용자인터페이스 플랫폼과 함께 이들 모두를 포괄하는 역량개발이 포함되어 있다. 현재 GFCS의 편익분야 중 자연재해경감, 수자원, 보건 분야와 함께 농업/식량안보분야가 4대 우선순위에 포함되어 있는데, WMO의 농업기상위원회(CAgM)은 동분야에 대한 GFCS의 효율적 이행을 지원하기 위해 GFCS의 5개 요소별로 이를 보완하기 위한 전구차원 선도적 협력방안(GIAM)을 제안 추진하고 있다. GIAM의 취지는 기존의 기후서비스체계의 개별적 서비스 구조를 통합하거나 미흡한 부분을 보완하는 방법 등 최소한의 추가적인 자원 투입으로 최대 시너지효과를 도출하는데 중점을 두고 있다. 관측분야는 전구생물계절관측협의체 구축, 연구분야는 지역/전구 농
림기상 파일롯프로젝트 도출, 기후서비스분야는 기존농업기상웹서버인 WAMIS의 지역 및 기능 확대, 사용자인터페이스분야는 기존 사이버농업기상협의체를 보완하기 위한 전구 농림기상학술협의체 구축, 그리고 역량개발분야는 전구농림기상교육훈련센터 구축 등이 추진 중에 있으며, 이들간의 유기적인 연동 지원을 위한 조정기구와 지원사무국의 설립도 기상청에 의해 가시화되고 있으며, 효율적인 운영을 위한 새로운 거버넌스도 미국 조지메이슨대를 중심으로 구축 중에 있다. 한편 GIAM의 성공적인 이행을 위해서는 전산자원 인프라 구축이 선행되어야 함으로 현재 WAMIS를 지원하기 위해서 세계기상기구 정보시스템(WIS)의 자료수집/생산센터(DCPC-WAMIS) 구축 및 회원국간 전산자원 공유를 위한 클라우드 및 그리드 환경 구축도 기상청과 KISTI/부경대 등의 협조를 얻어 추진 중에 있다, GIAM의 궁극적인 목표의 하나는 차세대 기후변화 대응 농림기상전문가의 양성에 있는데 이를 구현하는 방안으로 회원국의 추천을 받은 후보자를 전구농림기상 교육훈련센터 대학원 과정에 학비/수업료 면제조건으로 입학시킨 후, 지역 파일롯프로젝트에 연구원으로 참여, 이를 통해 생활비 등 지원을 받는 한편 농림기상 학술협의체 회원 활동, 국내외 실무그룹 활동 등을 통해 농림기상분야 국제전문가로 양성함으로써 향후 회원국농업/식량안보분야 기후변화 대응에 절대적으로 필요한 핵심정책연구 담당자로서의 역할을 기대할 수 있을 것이다.

REFERENCES

Archibald, O. W., 1995: Mediterranean ecosystems. Ecology of World Vegetation. O. W. Archibald (Eds.), Chapman & Hall, 131-164.

Bert, D., S. W. Leavitt, and J. L. Dupouey, 1997: Variations of wood ${\delta}^{13}C$ and water-use efficiency of Abies alba during the last century. Ecology 78, 1588-1596.

Bond, W. J., and W. D. Stock, 1990: Preliminary assessment of the grading of Eucalyptus clones using carbon isotope discrimination. Southern African Forestry Journal 154, 51-54.crossref(new window)

Brendel, O., D. Pot, C. Plomion, P. Rozenberg, and J. M. Guehl, 2002: Genetic parameters and QTL analysis of ${\delta}^{13}C$ and ring width in maritime pine. Plant, Cell and Environment 25, 945-953.crossref(new window)

Brugnoli, E., K. T. Hubick, S. von Caemmerer, S. C. Wong, and G. D. Farquhar, 1988: Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology 88, 1418-1424.crossref(new window)

Codon, A. G., R. A. Richards, G. J. Tebetzke, and G. D. Farquhar, 2004: Breeding for high water-use efficiency. Journal of Experimental Botany 55, 2447-2460crossref(new window)

Damesin, C., S. Rambal, and R. Joffre, 1998: Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecologia. 19, 195-204.crossref(new window)

Evans, J. R., and S. von Caemmerer, 1996: Carbon dioxide diffusion inside leaves. Plant Physiology 110, 339-346.

Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick, 1989: Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology 40, 503-537.crossref(new window)

Farquhar, G. D., M. H. O’Leary, and J. A. Berry, 1982: On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121-137.crossref(new window)

February, E. C., and W. D. Stock, 1999: Declining trend in the $^{13}C/^{12}C$ ratio of atmospheric carbon dioxide from tree rings of Soouth African Widdringtonia cedarbergensis. Quaternary Research 52, 229-236.crossref(new window)

Feng, X., 1998: Long-term ci/ca response of trees in western North America to atmospheric $CO_2$ concentration derived from carbon isotope chronologies. Oecologia 117, 19-25.crossref(new window)

Grant O. M., M. M. Chaves, and H. G. Jones, 2006: Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physiologia Plantarum 27, 507-518.

Han, S. U., C. Y. Oh, C. S. Kim, Y. J. Kim, K. N. Kang, and S. M. Lee, 2007: Time trends for genetic parameters of growth traits in open-pollinated progenies of Pinus densiflora. Korean Journal of Breeding Society 39, 457-463. (in Korean with English abstract)

Johnsen, K. H., L. B. Flanagan, D. A. Huber, and J. E. Major, 1999: Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half diallel mating design using field grown trees. Canadian Journal of Forest Research 29, 1727-1735.crossref(new window)

Johnsen, K. H., and J. E. Major, 1995: Gas exchange of 20-year-old black spruce families displaying a genotype ${\times}$ environment interaction in growth rate. Canadian Journal of Forest Research 25, 430-439.crossref(new window)

Kleiner, K. W., M. D. Abrams, and J. C. Schultz, 1992: The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of red oak and chestnut oak. Tree Physiology 11, 271-278.crossref(new window)

Korea Forest Service, 2008: Statistical Year Book of Forestry.

Korol, R. L., M. U. F. Kirschbaum, G. D. Farquhar, and M. Jeffreys, 1999: Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology 19, 551-562.crossref(new window)

Lee, K. J., 2011: Tree Physiology (3rd ed.). Seoul National University Press, 536pp

McNulty, S. G., and W. T. Swank, 1995: Wood ${\delta}^{13}C$ as a measure of annual basal area growth and soil water stress in a Pinus strobus forest. Ecology 76, 1581-1586.crossref(new window)

Meinzer, F. C., G. Goldstein, and D. A. Grantz, 1990: Carbon isotope discrimination in coffee genotypes grown under limited water supply. Plant Physiology 92, 130-135.crossref(new window)

Oh, C. Y., S. U. Han, and C. S. Kim, 2008: Differences of physiological responses according to growing conditions between superior family and inferior family in Pinus densiflora. Korean Journal of Breeding Society 40, 136-142. (in Korean with English abstract)

Oh, C. Y., S. U. Han, K. J. Lee, C. S. Kim, C. J. Oh, and D. H. Ji, 2009: Family selection on height growth in open-pollinated progeny trials of Pinus densiflora using relative height growth rate. Korean Journal of Breeding Society 41, 220-227. (in Korean with English abstract)

Osorio, J., and J. S. Pereira, 1994: Genotypic differences in water use efficiency and $^{13}C$ discrimination in Eucalyptus globulus. Tree Physiology 14, 871-882.crossref(new window)

Pita, P., F. Soria, I. Canas, G. Toval, and J. A. Pardos, 2001: Carbon isotope discrimination and its relationship to drought under field conditions in genotypes of Eucalyptus globules Labill. Forest Ecology and Management 141, 211-221.crossref(new window)

Prasolova, N. V., Z. H. Xu, G. D. Farquhar, P. G. Saffigna, and M. J. Dieters, 2001: Canopy carbon and oxygen isotope composition of 9-year-old hoop pine families in relation to seedling carbon isotope composition, growth, field growth performance, and canopy nitrogen concentration. Canadian Journal of Forest Research 31, 673-681.

Rajabi, A., H. Griffiths, E. S. Ober, W. Kromdijk, and J. D. Pidgeon, 2008: Genetic characteristics of water-use related traits in sugar beet. Euphytica 160, 175-187.crossref(new window)

Saurer, M., and U. Siegenthaler, 1989: $^{13}C/^{12}C$ isotope ratios in trees are sensitive to relative humidity. Dendrochronologia 7, 9-13.

Saurer, M., R. T. W. Siegwolf, and F. H. Schweingruber, 2004: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10, 2109-2120.crossref(new window)

Schulze, E. D., 1986: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology and Plant Molecular Biology 37, 247-274.crossref(new window)

Schulze, E. D., R. J. Williams, G. D. Farquhar, W. Schulze, J. Langridge, J. M. Miller, and B. H. Walker, 1998: Carbon nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25, 413-425.crossref(new window)

Warren, C. R., 2006: Estimating the internal conductance to $CO_2$ movement. Functional Plant Biology 33, 431-442.crossref(new window)

Warren, C. R., J. F. McGrath, and M. A. Adams, 2001: Water availability and carbon isotope discrimination in conifers. Oecologia 127, 476-486.crossref(new window)

Xu, Z. H., P. G. Saffigna, G. D. Farquhar, J. A. Simpson, R. J. Haines, S. Walker, D. O. Osborne, and D. Guinto, 2000: Carbon isotope discrimination and oxygen isotope composition in clones of the F1 hybrid between slash pine and Caribbean pine in relation to tree growth, water use efficiency and foliar nutrient concentration. Tree Physiology 20, 1209-1217.crossref(new window)

Yordanov, I., V. Velikova, and T. Tsonev, 2000: Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38, 171-186.crossref(new window)

Zhang, J. W., and J. D. Marshall, 1995: Variation in carbon isotope discrimination and photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environment. Functional Ecology 9, 402-412.crossref(new window)