한국농림기상학회지, 제 2권 제4호(2000) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 2, No. 4, (2000), pp. 175~182
ⓒ Author(s) 2014. CC Attribution 3.0 License.


산악지대의 일 최저기온 공간내삽모형

윤진일, 최재연, 윤영관, 정유란
경희대학교 생명자원과학연구원/농학과

(2000년 09월 19일 접수)

A Spatial Interpolation Model for Daily Minimum
Temperature over Mountainous Regions

Jin-Il Yun, Jae-Yeon Choi, Young-Kwan Yoon, Uran Chung
Department of Agronomy/Institute of Life Science and Natural Resources
Kyung Hee University, Suwon 449-701, Korea

(Manuscript received 19 September 2000)

ABSTRACT
Spatial interpolation of daily temperature forecasts and observations issued by public weather services is frequently required to make them applicable to agricultural activities and modeling tasks. In contrast to the long term averages like monthly normals, terrain effects are not considered in most spatial interpolations for short term temperatures. This may cause erroneous results in mountainous regions where the observation network hardly covers full features of the complicated terrain. We developed a spatial interpolation model for daily minimum temperature which combines inverse distance squared weighting and elevation difference correction. This model uses a time dependent function for ‘mountain slope lapse rate’, which can be derived from regression analyses of the station observations with respect to the geographical and topographical features of the surroundings including the station elevation. We applied this model to interpolation of daily minimum temperature over the mountainous Korean Peninsula using 63 standard weather station data. For the first step, a primitive temperature surface was interpolated by inverse distance squared weighting of the 63 point data. Next, a virtual elevation surface was reconstructed by spatially interpolating the 63 station elevation data and subtracted from the elevation surface of a digital elevation model with 1 km grid spacing to obtain the elevation difference at each grid cell. Final estimates of daily minimum temperature at all the grid cells were obtained by applying the calculated daily lapse rate to the elevation difference and adjusting the inverse distance weighted estimates. Independent, measured data sets from 267 automated weather station locations were used to calculate the estimation errors on 12 dates, randomly selected one for each month in 1999. Analysis of 3 terms of estimation errors (mean error, mean absolute error, and root mean squared error) indicates a substantial improvement over the inverse distance squared weighting.

Keyword: spatial interpolation, daily temperature, lapse rate, digital elevation model, south Korea

MAIN

적요

표준관측소의 점 단위 기온 관측 및 예보값을 농업분야에서 활용하기 위해서는 공간내삽이 필요한 경우가 많지만 기후학적 평년값 같은 장기간의 평균값 내삽과는 달리 지형효과를 반영하기 어려워 거리역산가중법이 수정 없이 사용되고 있다. 우리 나라처럼 지형이 복잡한 산악지역에서는 수평 거리에만 의존한 내삽 결과에 심각한 오류가 포함될 수 있으므로, 영농지원 정보로서 중요한 일 최저기온을 대상으로 추정오차의 최대근원인 해발고도의 영향을 보정 할 수 있는 간단한 공간내삽모형을 작성하였다. 먼저 남한 육지 상에 위치한 63개 표준관측소에서 수집된 일 최저기온자료와 관측소의 위치, 해안으로부터 거리, 경사향, 표고 등 국지기온 결정인자를 회귀분석 하여 표고에 따른 기온감율 추정식을 날짜의 함수로 표현하였다. 63개 관측점의 표고값을 공간내삽 하여 재구성한 전국의 가상 지형으로부터 1 km$\times$ 수식 이미지 1 km 공간단위의 전국 수치고도값 편차를 계산하고, 여기에 해당 날짜의 기온감율을 적용하여 보정값을 계산한다. 기존의 거리역산가중법에 의한 기온추정값을 이 보정값에 의해 수정함으로써 최종 기온값을 얻는다. 임의로 선발된 1999년의 월별 하루씩 총 12일에 대하여 이 모형과 기존 거리역산가중법을 각기 적용하여 267개 자동기상관측지점의 일 최저기온을 추정한후 실측값과 비교하였다 오차평균, 절대오차평균, 그리고 평방근오차평균 등 세가지 추정오차를 분석한 결과 이 방법이 거리역산가중법에 비해 산악지역에서의 일 최저기온 추정에 있어 뚜렷한 개선효과를 보였다.

REFERENCES