한국농림기상학회지, 제 6권 제1호(2004) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 6, No. 1, (2004), pp. 49~60
ⓒ Author(s) 2014. CC Attribution 3.0 License.


경기북부지역 정밀 수치기후도 제작 및 활용 – 1. 수치기후도 제작

김성기(1), 박중수(1), 이은섭(1), 장정희(1), 정유란(2), 윤진일(2)
(1)경기도 농업기술원 북부농업시험장
(2)경희대학교 생태시스템공학과/생명자원과학연구원

(2004년 01월 12일 접수; 2004년 03월 02일 수락)

Development and Use of Digital Climate Models in Northern
Gyunggi Province – I. Derivation of DCMs from
Historical Climate Data and Local Land Surface Features

S. K. Kim(1) , J. S. Park(1), E. S. Lee(1), J. H. Jang(1), U. Chung(2), Jin I. Yun(2)
(1)Northern Agriculture Research Station, Gyeonggi-Do Agricultural Research and Extension Service
(2)Department of Ecosystem Engineering/Institute of Life Science and Natural Resources, Kyung Hee University

(Received January 12, 2004; Accepted March 02, 2004)

ABSTRACT
Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Keyword: topoclimatology, temperature, solar radiation, precipitation, spatial interpolation, cold air drainage

MAIN

적요

파주, 연천, 포천 등 경기북부 접경지역에 대해 30m 해상도의 수치기후도를 제작하였다. 사용된 기후자료는 남북한 51개 표준기상관측소에서 1981-2000 기간중 관측된 일 최고/최저기온, 강수량, 일사량의 윌별 평균값이며, 공간내삽을 위해 사면의 냉기침강 및 온난대(최저기온), 일사수광량(최고기온), 표고차 및 거리(모든 요소) 보정항을 갖는 지형기후모형을 이용하 였다. 공간변이 추정값의 신뢰도는 최저기온에 대해서만 현지에 관측망을 구성하여 검증하였고, 나머지 요소에 대한 검증은 실시하지 않았다. 수치기후도를 활용하여 재현확률에 따른 겨울철 동해위험도를 과종별로 작성하였고, 종상일과 과종별 만개기를 추정하여 봄철 늦서리 위험도를 계산하였다.
신뢰성 있는 고해상도 수치기후자료가 경기북부 접경지역에 대하여 처음으로 제작되었지만 수치기후도 그 자체만으로는 이 지역의 농가소득을 증대시키거나 비용을 경감하는 효과는 기대하기 어렵다. 만들어진 수치기후도를 어떻게 활용하느냐에 따라 자치단체의 친환경적 국토이용계획 수립, 농가 생산비용 절감 및 수익성 증대에 기여 여부가 결정될 것이다. 활용도를 높이기 위해서는 수치기후도가 궁극적으로 지역의 농업기상 감시체계로 발전되어야 한다. 현재 전국 400여 개 지점에 설치된 기상청 자동기상관측망과 200 개에 달하는 농진청 무인기상관측망에서는 10분 혹은 매 시간대별 기상자료를 실시간으로 생산하고 있으며, 이들 중 일부가 경기북부지역에도 설치되어있으므로 수치기후도와 결합되면 30m 해상도의 기상실황 감시체계로 전환된다. 그렇게 되면 단순한 적지판정 수준을 벗어나 시간별 혹은 일별 수치기상자료를 활용하는 동적인 생태계 관리모형의 실용화가 기대된다.
본 연구에서 이용된 기술은 전국의 나머지 시군 지역에도 동일하게 적용될 수 있으므로, 중앙정부 차원에서 전국적인 사업으로 추진한다면 단시일 내에 수치 기후도의 실용화가 이루어질 수 있다. 나아가 통일을 대비한 북한지방의 농림업, 중국 서부 개발계획에의 참여, 동북아 생태계 보전 및 기후변화 대응기술 등에 필요한 수치기후도의 작성에도 우리의 기술이 기여할 것으로 기대된다.

REFERENCES

Choi, J., U. Chung, and J. I. Yun 2003: Urban effect correction to improve accuracy of spatially interpolated temperature estimates in Korea. Journal of Applied Meteorology 42: 1711-1719

Chung, U., and J. I. Yun, 2002: Spatial interpolation of hourly air temperature over sloping surfaces based on a solar irradiance correction. Korean Journal of Agricultural and Forest Meteorology, 4(2), 95-103

Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, and J. I. Yun., 2002: Minimum temperature mapping in complex terrain considering cold air drainage. Korean Journal of Agricultural and Forest Meteorology, 4(3), 133-140

Chung, U., H. C. Seo, J. I. Yun, and K. H. Lee, 2003: An optimum scale for topoclimatic interpolation of daily minimum temperature in complex terrain. Korean Journal of Agricultural and Forest Meteorology, 5(4), 261-265

Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical – topographical model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33, 140-158

Dodson, R. and D. Marks, 1997: Daily temperature interpolated at high spatial resolution over a large mountainous region. Climate Research 8(1), 1-20

Dodson, R. and D. Marks, 1997: Daily temperature interpolated at high spatial resolution over a large mountainous region. Climate Research 8(1), 1-20

Gates, D. M., 1980: Biophysical Ecology. Springer-Verlag, New York

Holdaway, M. R., 1996: Spatial modeling and interpolation of monthly temperature using kriging. Climate Research 6, 215-225

Nakai, K., 1990. Japanese system of the meteorological information service to user communities including education and training. In A. Price-Budgen(ed.) Using Meteorological Information and Products. Ellis Horwood, UK. 257-274

Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225

Phillips, D. L., J. Dolph, and D. Marks, 1992: A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology 58, 119-141199

Regniere, J., 1996: Generalized approach to landscapewide seasonal forecasting with temperature-driven simulation models. Environmental Entomology 25(5), 896-881

Regniere, J., B. Cooke, and V. Bergeron, 1996: BioSIM: A Computer-Based Decision Support Tool for Seasonal Planning of Pest Management Activities. User’s Manual. Canadian Forest Service Info. Rep. LAU-X-116. 50p

Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48(4), 379- 383

Shin, M. Y., and J. I. Yun, 1992: Estimation of monthly temperature distribution in Cheju Island by topoclimatological relationships. Journal of Korean Forestry Society 81, 40-52

un, J. I., 2000: Estimation of climatological precipitation of North Korea by using a spatial interpolation scheme. Korean Journal of Agricultural and Forest Meteorology 2(1),16-23

Yun, J. I., and S. E. Taylor, 1998: Modelling soil temperature of sloped surfaces by using a GIS technology. Korean J. Crop Science 43(2), 113-119