한국농림기상학회지, 제 8권 제4호(2006) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 8, No. 4, (2006), pp. 242~249
ⓒ Author(s) 2014. CC Attribution 3.0 License.


경기북부지역 콩 생산에 미치는 지구온난화의 영향

서희철(1), 김성기(2), 이영수(2), 조영철(2)
(1)경희대학교 생명과학부, (2)경기도 농업기술원 제(2)농업연구소

(2006년 09월 10일 접수; 2006년 11월 23일 수락)

Geographical Shift of Quality Soybean Production Area in
Northern Gyeonggi Province by Year 2100

Hee-Cheol Seo(1), Seong-Ki Kim(2), Young-Soo Lee(2),, Young-Cheol Cho(2)
(1)Department of Ecosystem Engineering, Kyung Hee University
(2)Northern Agriculture Research Station, Gyeonggi Agricultural Research and Extension Service

(Received September 10, 2006; Accepted November 23, 2006)

ABSTRACT
Potential impacts of the future climate change on crop production can be inferred by crop simulations at a landscape scale, if the climate data may be provided at appropriate spatial scales. Northern Gyunggi Province is one of the few prospective regions in South Korea for growing quality soybeans. Any geographical shift of production areas under the changing climate may influence the current land planning policy in this region. A soybean growth simulation was performed at 342 land units in northern Gyunggi province to test the potential geographical shift of the current production areas for quality soybeans in the near future (form 2011 to 2100). The land units for soybean cultivation were selected by the land use, the soil characteristics, and the minimum arable land area. Daily maximum and minimum temperature, precipitation, the number of rain days and solar radiation were extracted for each land unit from the future digital climate models (DCM, 2011-2040, 2041-2070, 2071-2100). Daily weather data for 30 years were randomly generated for each land unit for each normal year by using a well-known statistical method. They were used to run CROPGRO-Soybean model to simulate the growth, phonology, and yields of 3 cultivars representing different maturity groups grown at 342 land units. According to the model calculations, the warming trend in this region will accelerate the flowering and physiological maturity of all cultivars, resulting in a 7 to 9 days reduction in overall growing season and a 1 to 15% reduction in grain yield of early to medium maturity cultivars. There was a slight increase in grain yield of the late maturing cultivar under the projected climate by 2070, but a decreasing tend was dominant by the year 2100.

Keyword: Soybean, Growth simulation, Climate change, CROPGRO

MAIN

적요

육상생태계에 나타날 수 있는 기후변화의 영향을 평가하기 위해 생태계모형의 사용이 보편화되고 있다. 작물생육모형의 경우 포장단위로 적용할 수 있으므로 기후변화정보만 적절한 공간단위로 제공된다면 경관규모에서 상세한 공간변화를 예측할 수 있다. 경기북부지역은 청정환경과 함께 고품질 콩 재배에 알맞는 기후지대이지만 기후변화에 의해 이 지역 내 콩 재배단지가 어떤 영향을 받을지 궁금하다. 향후 100년간(2011-2100) 예상되는 기후조건에서 선발된 10ha 이상 규모의 342개 단지를 대상으로 CROPGROSoybean에 의해 조중만생 콩 품종의 생육을 모의하였다. 이를 위해 3개 기후학적 평년(2011-2040, 2041-2070, 2071-2100)에 대해 월별 30m 격자형 기후변화 자료로부터 각 재배단지의 일 최고 및 최저 기온, 강수량, 강수일수, 일사량을 추출하고, 각 평년별로 일 기상자료를 통계학적 방법에 의해 무작위로 30년치씩 생성하였다. 미래 3개 평년의 기상자료에 의해 생육모형을 구동하여 342개 재배단지의 생장, 발육, 수량특성을 모의한 결과 온난화가 진행될수록 콩의 개화기와 성숙기가 단축되며, 전체적인 생육기간은 7~9일 정도 줄어들었다. 수량은 조중생종의 경우 온난화에 따라 1~15% 정도 감소하였는데 반해 만생종은 증가 후 감소하였다. 그 결과 현존하는 재배구역의 남북간 생산성 차이가 미래에는 크게 감소하거나 품종에 따라 역전되는 현상이 기대된다.

REFERENCES

Boote, K. J., J. W. Jones, and G. H. Hoogenboom, 1998: Simulation of crop growth: CROPGRO Model. In R. M. Peart and R. B. Curry (eds.), Agricultural Systems Modeling and Simulation. Marcel Dekker, New York. 651-692

Choi, K. G., J. K. Kim, S. C. Lee, W. H. Lee, and B. K. Jeon, 1980: Studies on ecological characteristics of some soybean (Glycine max L. Merr) cultivars. 2. Effects of daylengthon flowering and other agronomic characteristics. Korean Journal of Crop Science 25(4), 59-65

Chung, D., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24crossref(new window)

Kim, S. K., J. S. Park, Y. S. Lee, J. H. Jang, U. Chung, and J. I. Yun, 2004a: Development and use of digital climate models in Northern Gyunggi Province-I. Derivation of DCMs from historical climate data and local land surface features. Korean Journal of Agricultural and Forest Meteorology 6, 49-60

Kim, S. K., J. S. Park, Y. S. Lee, H. C. Seo, K. S. Kim, and J. I. Yun, 2004b: Development and use of digital climate models in Northern Gyunggi Province-II. Site-specific performance evaluation of soybean clutivars by DCMbased growth simulation. Korean Journal of Agricultural and Forest Meteorology 6,61-69

Lee, H. S., 1976: Effect of defloiation on the grain yield of two soybean cultivars grown under different population densities. Korean Journal of Crop Science 21(2), 250-258

Pickering, N. B., J. W. Hansen, J. W. Jones, H. Chan, and D. Godwin, 1994: WeatherMan: a utility for managing and generating daily weather data. Agronomy Journal 86, 332-337

Regniere, J., 1996: Generalized approach to landscapewide seasonal forecasting with temperature-driven simulation models. Environmental Entomology 25(5), 896-881

Regniere, J., B. Cooke, and V. Bergeron, 1996: BioSIM: A Computer-Based Decision Support Tool for Seasonal Planning of pest Management Activities. User’s Manual Canadian Forest Service Info. Rep. SAU-X-116. 50p

Ritchie, J. T., D. C. Godwin, and U. Singh, 1990: Soil and weather inputs for the IBSNAT crop models. In: Proceedings of IBSNAT Symposium Decision Support System for Agrotechnology Transfer. University of Hawaii. Honolulu, USA

Shim, K. M., Y. S. Lee, Y. K. Shin, K. Y. Kim, and J. T. Lee, 2005: Changes in simulated rice yields under GCM $2xCO_2$ climate change scenarios. 7th Conference on Agricultural and Forest Meteorology, 88-92.

Yun, J. I., 2006: Climate change Impact on the flowering season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8(2), 68-76

한화진(대표저자), 2005 : 기후변화영향평가및 적응시스템 구축 I. 경제인문사회연구회 협동연구총서 05-20- 01, 한국환경정책평가연구원 , 383pp