한국농림기상학회지, 제 8권 제3호(2006) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 8, No. 3, (2006), pp. 190~198
ⓒ Author(s) 2014. CC Attribution 3.0 License.


질소영양 상태에 따른 벼 군락의 광 이용효율 변화

이동윤, 김민호, 이규종, 이변우
서울대학교 농업생명과학대학 식물생산과학부

(2006년 08월 21일 접수; 2006년 09월 05일 수락)

Changes in Radiation Use Efficiency of Rice Canopies under Different
Nitrogen Nutrition Status

Dong-Yun Lee, Min-Ho Kim, Kyu Jong Lee, Byun-Woo Lee
(1)Department of Plant Science, Seoul National University, Seoul 151-921, Korea

(Received August 21, 2006; Accepted September 05, 2006)

ABSTRACT
Radiation use efficiency (RUE), the amount of biomass produced per unit intercepted photosynthetically active radiation (PAR), constitutes a main part of crop growth simulation models. The objective of the present study was to evaluate the variation of RUE of rice plants under various nitrogen nutritive conditions. from 1998 to 2000, shoot dry weight (DW), intercepted PAR of rice canopies, and nitrogen nutritive status were measured in various nitrogen fertilization regimes using japonica and Tongil-type varieties. These data were used for estimating the average RUEs before heading and the relationship between RUE and the nitrogen nutritive status. The canopy extinction coefficient (K) increased with the growth of rice until maximum tillering stage and maintained constant at about 0.4 from maximum tillering to heading stage, rapidly increasing again after heading stage. The DW growth revealed significant linear correlation with the cumulative PAR interception of the canopy, enabling the estimation of the average RUE before heading with the slopes of the regression lines. Average RUE tended to increase with the increased level of nitrogen fertilization. RUE increased approaching maximum as the nitrogen nutrition index (NNI) calculated by the ratio of actual shoot N concentration to the critical N concentration for the maximum growth at any growth stage and the specific leaf nitrogen (SLN; g/m2 leaf area) increased. This relationship between RUE (g/MJ of PAR) and N nutritive status was expressed well by the following exponential functions:
RUE = 3.13{1 – exp(–4.33NNI+1.26)}
RUE = 3.17{1 – exp(–1.33SLN+0.04)}
The above equations explained, respectively, about 80% and 75% of the average RUE variation due to varying nitrogen nutritive status of rice plants. However, these equations would have some limitations if incorporated as a component model to simulate the rice growth as they are based on relationships averaged over the entire growth period before heading.

Keyword: Rice, Nitrogen nutrition index, Specific leaf nitrogen, Extinction coefficient, Radiation use efficiency

MAIN

적요

본 연구는 벼의 질소영양 상태가 광 이용효율에 미치는 영향을 검토하여 벼 생육모델을 구축하기 위한 기초자료를 얻기 위해 수행되었다. 1998년부터 2000년까지 3개년에 걸쳐서 일반계 및 통일계 품종을 공시하여 다양한 질소시비 조건에서 건물중, 군락의 흡광량 및 질소영양 상태를 조사하였고, 이들 자료를 이용하여 군락의 광 이용효율 및 광 이용효율과 질소영양 상태와의 관련성을 검토하였다.
벼 군락의 흡광계수(K)는 최고분얼기까지 벼의 생장과 함께 증가하다가, 최고분얼기에서 출수기까지는 0.4정도로 일정하게 유지되고, 출수기 이후부터 다시 급격하게 증가하였다. 출수전 벼 군락의 누적 PAR interception과 건물중과는 직선 회귀관계가 성립하였고, 이 직선 회귀계수를 이용하여 군락의 출수전 평균 광이용효율(RUE, g/MJ of PAR)을 추정하였는데, 평균 RUE는 질소시비량이 많을수록 높아지는 경향이었다. 벼에서 출수전의 RUE는 질소영양 상태를 나타내는 질소영양지수(NNI, nitrogen nutrition index) 및 비엽질소농도(SLN, specific leaf nitrogen oncentration;
g/m2 leaf area)가 증대됨에 따라 최대 RUE에 점근하는 다음과 같은 지수함수로 잘 표현할 수 있었다.
RUE = 3.13{1 – exp(–4.33NNI+1.26)}
RUE = 3.17{1 – exp(–1.33SLN+0.04)} (4)
위의 식은 질소영양 조건에 따른 RUE의 변이를 각각 80%와 75% 정도를 설명할 수 있다. 여기에서 구해진 RUE와 NNI 및 SLN 관계는 출수전 전 기간의 평균적인 관계에 근거한 것으로서, 벼 생육모델의 건물중 추정의 구성모델(component model)로서 활용하는 데는 한계가 있으며, 건물중 추정 구성모델로 이용하기 위해서는 보다 짧은 기간을 대상으로 이와 같은 분석이 이루어져야 할 것으로 판단된다.

REFERENCES

Allison, J. C. S., H. T. Williams, and N. W. Pammenter, 1997: Effect of specific leaf nitrogen content onphotosynthesis of sugarcane. Annals of Applied Biolology 131, 339-350crossref(new window)

Bange, M. P., G. L. Hammer, and K. G. Rickert, 1997: Effect of specific leaf nitrogen on radiation use efficiency and growth of sunflower. Crop Science 37, 1201-1207

Campbell, C. S., J. L. Heilman, K. J. McInnes, L. T. Wilson, J. C. Medley, G. Wu, and D. R. Cobos, 2001: Seasonal variation in radiation use efficiency of irrigated rice. Agricultural and Forest Meteorology 110, 45-54crossref(new window)

Cui, R. X., M. H. Kim, J. H. Kim, H. S. Nam, and B. W. Lee, 2002: Determination of critical nitrogen concentration and dilution curve for rice growth. Korean Journal of Crop Science 47(2), 127-131

Green, C. F., 1987: Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agricultural and Forest Meteorology 41, 207-208crossref(new window)

Greenwood, D. J., G. Lemaire, G. Gosse, P. Cruz, and A. Draycott, 1990: Decline in percentage N of C3 and C4 crop with increasing plant mass. Annals of Botany 66, 425-436

Horie, T., and T. Sakuratani, 1985: Studies on crop-weather relationship model in rice. (1) Relation between absorbed solar radiation by the crop and the dry matter production. Japanese. Journal of Agricultural Meteorology 40, 331-342

Inthapan, P., and S. Fuke, 1988: Growth and yield of rice cultivars under sprinkler irrigation in southeastern Queensland. 2. Comparison with maize and grain sorghum under wet and dry condition. Australian Journal of Experimental Agriculture 28, 243-248crossref(new window)

Justes, E., B. Mary, J. M. Meynard, J. M. Jachet, and L. Thelier-huches, 1994: Determination of a critical nitrogen dilution curve for inter wheat crops. Annals of Boany 74, 397-407crossref(new window)

Justes, E., P, Denoroy, B. Gabrielle, and G. Gosse, 2000: Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape. European Journal of Agronomy 13, 165-177crossref(new window)

Kiniry, J. R., C. A. Jones, J. C. O’Toole, R. Blanchet, M. Cabelguenne, and D. A. Spanel, 1989: Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Research 20, 51-64crossref(new window)

Lee, J. Y., 1976: The Effect of the Photosynthetic Ability and the Nutritional Status on Dry matter Production and Yield Components of the Rice Plant at the Latter Half of the Growth Stage. Korean Journal of Crop Science 21(2), 187-202

Lemaire, G., and F. Gastal, 1997: N uptake and distribution in plant canopies. In : G. Lemaire (Eds.), Diagnosis of the nitrogen status in crops. Springer-Verlag, 3-34

Monteith, J. L., 1972: Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9, 747-765crossref(new window)

Muchow, R. C., 1988: Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: 1. Leaf growth and leaf nitrogen. Field Crops Research 18, 1-16crossref(new window)

Muchow, R. C. and R. Davis, 1988: Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment : II. Radiation interception and biomass accumulation. Field Crops Research 18, 17-30crossref(new window)

Muchow, R. C., M. J. Robertson, and B. C. Pengelly, 1993: Radiation use efficiency of soybean, mungbean and cowpea under different environmental conditions. Field Crops Research 32, 1-16crossref(new window)

Murata, Y., 1961: Studies on the photosynthesis of rice plants and its culture significance. Bulletin of National Institute of Agricultural Science (Japan) Series D9, 1-169

Osada, A., 1966: Relationship between photosynthetic activity and dry matter production in rice varieties, especially as influenced by nitrogen supply. Bulletin of National Institute of Agricultural Science (Japan) Series D14, 117-188

Plnet, D., and G. Lemaire, 1999: Relationship between dynamics of nitrogen and drymatter accumulation in maize crops. Determination of critical N concentration. Plant and Soil 216, 65-82crossref(new window)

Sinclair, T. R., and T. Horie, 1989: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Science 29, 90-98