한국농림기상학회지, 제 9권 제2호(2007) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 2, (2007), pp. 140~148
DOI: 10.5532/KJAFM.2007.9.2.140
ⓒ Author(s) 2014. CC Attribution 3.0 License.


세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지)
관측지 지면모수의 공간 비균질성 정량화

문상기(1), 류영렬(2), 이동호(1), 김 준(1), 임종환(3)
(1)연세대학교 대기과학과, (2)미국 캘리포니아 주립대학교 버클리 캠퍼스 환경과학 정책관리학과
(3)국립산림과학원, 산림생태과

(2007년 03월 16일 접수; 2007년 06월 11일 수락)

Quantifying the Spatial Heterogeneity of the Land Surface Parameters
at the Two Contrasting KoFlux Sites by Semivariogram

Sang-Ki Moon(1), Youngryel Ryu(2), Dongho Lee(1), Joon Kim(1),, Jong-Hwan Lim(3)
(1)Dept. of Atmospheric Sciences, Yonsei Univ., Seoul 120-749, Korea
2
Biometeorology Lab., Ecosystem Science Division, Dept. of Environmental Science, Policy,
and Management (ESPM), Univ. of California, Berkeley, CA 94720
(3)Korea Forest Research Institute, Seoul 130-712, Korea

(Received March 16, 2007; Accepted June 11, 2007)

ABSTRACT
The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

Keyword: Spatial heterogeneity, LST, Albedo, Semivariogram, Characteristic scale

MAIN

적요

경관의 비균질성은 원격 탐사에 의한 지면 특성 관측에 필연적으로 영향을 준다. 본 연구에서는 주요 지면 모수의 경관 비균질성을 정량적으로 해석할 수 있는 지구통계기법을 소개한다. 연구지역은 두 곳의 KoFlux 연구지로서 (1) 복잡지형의 온대 혼합림으로 구성된 광릉 연구지와 (2) 비교적 평탄한 농경지인 해남 연구지이다. 복사 모수인 지면온도(LST)와 알베도의 공간적 비균질성을 특성화하기 위하여 세미베리오그램과 프랙털 분석을 수행하였다. 이 두 모수는 두 연구지의 상향 장파 및 단파 복사를 결정하는 중요한 인자들이다. 이 모수들은 2001년 9월 23일과 2002년 2월 14일의 두 지역의 고해상도 Landsat ETM+영상에서 추출하였다. 분석 결과, 광릉과 해남 연구지는 알베도의 특성 규모가 각각 1 km 이상 그리고 약 0.3km 이었다. 지면온도의 경우, 특성 규모는 광릉이 1km 이상 그리고 해남이 0.6-1.0 km 이상이었다. 두 지면 모수의 특성 규모는 두 지역에서 모두 계절 변화를 보이지 않았다.

REFERENCES

Artis, D. A. and W. H. Carnahan, 1982: Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment 12(4), 313-329crossref(new window)

Chavez, P. S., 1996: Image-based atmospheric correctionsrevisited and improved. Photogrammetric Engineering and Remote Sensing 62(9), 1025-1036

Choudhury, B. J., N. U. Ahmed, S. B. Idso, R. J. Reginato, and C. S. T. Daughtry, 1994: Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment 50(1), 1-17crossref(new window)

Davis, J., 1986: Statistics and Data Analysis in Geology (2nd ed.). John Wiley & Sons, 637 pp

Garrigues, S., D. Allard, F. Baret, and M. Weiss, 2006: Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment 103, 81-96crossref(new window)

Journel, A. G. and C. J. Huijbregts, 1978: Mining Geostatistics. Academic Press, London, 600 pp

Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon, J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B.-L. Lee and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21(6), 881-889crossref(new window)

Lee, D., J. Kim, S.-J. Kim, S.-K. Moon, J. Lee, J.-H. Lim, Y. Son, S. Kang, S. Kim, K. Kim, and B. Lee, 2007: Lessons from cross-scale studies for Gwangneung forest, Korea: Complex terrain, carbon and water budgets, water use efficiency, and Monsoon. Korean Journal of Agricultural and Forest Meteorology, this issue

Lee, H. C., J. Hong, C. Cho, B. Choi, and J. Kim, 2003: Surface exchange of energy and carbon dioxide between the atmosphere and a farmland in Haenam, Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 61-69

Levin, S. A., 1992: The problem of pattern and scale in ecology. Ecology 73, 1943-1967crossref(new window)

Li, F., T. Jackson, W. P. Kustas, T. Schmugge, A. N. French, M. Cosh, and R. Bindlish, 2004: Deriving land surface temperature from Landsat 5 and 7 during SMEX02/ SMACEX. Remote Sensing of Environment 92, 521-534crossref(new window)

Liang, S. L., 2004: Quantitative Remote Sensing of Land Surfaces. John Wiley & Sons, New Jersey

Markham, B. L. and J. L. Barker, 1986: Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Technical Notes 1, 3-8

Moon, S.-K., S.-H. Park, J. Hong and J. Kim, 2005: Spatial characteristics of Gwangneung forest site based on high resolution satellite images and DEM. Korean Journal of Agricultural and Forest Meteorology 7(1), 115-123 (in Korean with English abstract)

Quattrochi, D. A., and M. F. Goodchild, 1997: Scale in Remote Sensing and GIS. Boca Raton: Lewis Publishers, 432pp

Ryu, Y., S. Kang, S.-K. Moon, and J. Kim, 2007: Evaluation of moderate resolution imaging spectroradiometer (MODIS) driven land surface radiation balance over a complex terrain and a heterogeneous landscape for clear sky days. Agricultural and Forest Meteorology, submitted

Sobrino, J. A., N. Raissouni and Z. L. Li, 2001: A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment 75(2), 256-266crossref(new window)