한국농림기상학회지, 제 9권 제2호(2007) (pISSN 1229-5671, eISSN 2288-1859)
Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 2, (2007), pp. 109~120
DOI: 10.5532/KJAFM.2007.9.2.109
ⓒ Author(s) 2014. CC Attribution 3.0 License.


수문생지화학적 접근을 통한 광릉 산림 유역의 물과 탄소 순환 이해

김수진(1), 이동호(1), 김 준(1), 김 승(2)
(1)연세대학교 대기과학과/지구환경연구소,
(2)건설기술연구원/수자원의 지속적 확보기술개발 사업단

(2007년 03월 12일 접수; 2007년 06월 11일 수락)

Hydro-Biogeochemical Approaches to Understanding of Water and
Carbon Cycling in the Gwangneung Forest Catchment

Su-Jin Kim(1), Dongho Lee(1), Joon Kim(1), Sung Kim(2)
(1)Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University,
Shinchon-dong 134, Seodaemun-gu, Seoul 120-749, Korea
(2)Sustainable Water Resources Research Center/KICT, Goyang City, Kyeonggi-do 411-712, Korea

(Received March 12, 2007; Accepted June 11, 2007)

ABSTRACT
The information on flowpath, storage, residence time, and interactions of water and carbon transport in a catchment is the prerequisite to the understanding and predicting of water and carbon cycling in the mountainous landscapes of Korea. In this paper, along with some up-to-date results, we present the principal methods that are currently used in HydroKorea and CarboKorea research to obtain such information. Various catchment hydrological processes have been examined on the basis of the water table fluctuations, the end-member mixing model, the cross correlation analysis, and cosmogenic radioactive isotope activity. In the Gwangneung catchment, the contribution of surface discharge was relatively large, and the changes in the amount, intensity and patterns of precipitation affected both the flowpath and the mean residence time of water. Particularly during the summer monsoon, changes in precipitation patterns and hydrological processes in the catchment influenced the carbon cycle such that the persistent precipitation increased the discharge of dissolved organic carbon (DOC) concentrated in the surface soil layer. The improved understanding of the hydrological processes presented in this report will enable a more realistic assessment of the effects of climate changes on the water resource management and on the carbon cycling in forest catchments.

Keyword: Gwangneung forest catchment, Hydro-biogeochemistry, Monsoon, Carbon and water cycling, DOC

MAIN

적요

한국 산악 경관에서의 물과 탄소의 순환을 이해하고 예측하기 위해서는 물과 탄소의 유역 내 이동 경로, 저류, 체류시간 및 상호작용에 대한 정보가 선행되어야한다. 이와 관련하여 본 논문에서는 HydroKorea 및 CarboKorea 연구에서 사용하고 있는 연구 방법들과 현재까지의 주요 결과를 소개한다. 유역 내 다양한 수문순환 과정을 이해하기 위해 지하수위 변동, endmember mixing model, 교차상관 분석, 대기 기원의 천연방사성 동위원소를 이용하였다. 광릉 산림 유역에서는 지표유출의 기여도가 상대적으로 높았고, 강수량과 강수강도 및 패턴의 변화가 물의 유출경로와 체류시간에 영향을 주었다. 특히, 몬순으로 인한 강수형태와 유역 내 수문과정의 변화가 탄소 순환에 영향을 미쳤는데, 지속적인 강우의 유입이 산림토양의 표층에 분포하는 고농도의 용존유기탄소의 유출을 증가시켰다. 본 연구를 통하여 시도된 수문순환과정에 대한 정량적인 규명은 기후 변화가 수자원 관리와 산림유역 탄소순환에 미치는 영향을 예측하기 위한 과학적 방법론을 확립하는데 기여할 것으로 기대된다.

REFERENCES

Anderson, M. G. and T. P. Burt, 1991: Process Studies in Hillslope Hydrology. John Wiley and Sons, 539pp

Betson, R. P., 1964: What is watershed runoff? Journal of Geophysical Research 69, 1541-1551crossref(new window)

Choi, I. H., N. C. Woo, S. J. Kim, and J. Kim, 2007: Estimation of the groundwater recharge rate at a headwater catchment in Gwangneung, Korea. Korean Journal of Agricultural and Forestry Meteorology, this issue

Christophersen, N., C. Neal, R. P. Hooper, R. D. Vogt, and S. Andersen, 1990: Modeling streamwater chemistry as a mixture of soilwater end-members – a step towards second-generation acidification models. Journal of Hydrology 116, 307-320crossref(new window)

Dawson, H. J., F. C. Ugolini, B. F. Hrutfiord, and J. Zachara, 1975: Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington. Soil Science 126, 290-296

Edwards, M., M. M. Bejamin, and J. N. Ryan, 1996: Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloid Surfaces A 107, 297-307crossref(new window)

Elsenbeer, H., D. Lorieri, and M. Bonell, 1995: Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment. Water Resources Research 31, 2267-2278crossref(new window)

Gu, B., J. Schimitt, Z. Chen, L. Liang, and J. F. McCarthy, 1994: Adsorption and desorption of natural organic matter on iron oxides: Mechanisms and models. Environmental Science & Technology 28, 38-46crossref(new window)

Guggenberger, G., W. Zech, and H. -R., Schulten, 1994: Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Organic Geochemistry 21(1), 51-66crossref(new window)

Herbert, B. E., and P. M. Bertsch, 1995: Characterization of dissolved and colloidal organic matter in soil solution. Carbon forms and functions in forest soils, J. M. Kelly and W. W. McFee (Eds), SSSA, Madison, WI, 63-88

Hooper, R. P., N. Christophersen, and N. E. Peters, 1990: Modeling streamwater chemistry as a mixture of soilwater end-members-an application to the Panola Mountain Catchment, Georgia, U.S.A. Journal of Hydrology 116, 321-343crossref(new window)

Horton, R. E., 1933: The role of infiltration in the hydrologic cycle. American Geophysical Union. Transaction 14, 446-460

Jardine, P. M., N. L. Weber, and J. F. McCarthy, 1989: Mechanism of dissolved organic carbon adsorption on soil. Soil Science Society of America Journal 53, 1378-1385

Kaiser, K., and W. Zech, 1998a: Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Science Society of America Journal 62, 129-136

Kaiser, K., and W. Zech, 1998b: Rates of dissolved organic matter release and sorption in forest soils. Soil Science 62, 129-136

Kalbitz, K., S. Solinger, J. -H. Park, B. Michalzik, and E. Matzner, 2000: Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165, 277-304crossref(new window)

Katsuyama, M., N. Ohte, and S. Kobashi, 2001: A threecomponent end-member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrological Processes 15, 249-260crossref(new window)

Kawasaki, M., N. Ohte, and M. Katsuyama, 2005: Biogeochemical and hydrological controls on carbon export from a forested catchment in central Japan. Ecological Research 20, 347-358crossref(new window)

Kim, E., S. Kang, B. Lee, K. Kim, and J. Kim, 2007: Application and parameterization of RHESSys for integrating the eco-hydrological processes in the Gwangneung small watershed. Korean Journal of Agricultural and Forestry Meteorology, this issue

Kim, S. J., 2003: Hydro-Biogeochemical Study on the Sulfur Dynamics in a Temperature Forest Catchment. Ph. D. Dissertation. Kyoto University

Kim, S. J., N. Ohte., M. Kawasaki., M. Katsuyama., N. Tokuchi, and S. Hobara, 2003: Interactive responses of dissolved sulfate and nitrate to disturbance associated with pine wilt disease in a temperate forest. Soil Science and Plant Nutrition 49, 539-550

Kim, S. J., and J. Kim, 2006: How to evaluate the DOC and POC discharge from forest ecosystem during monsoon? USA PUB Workshop, CUASHI

Kim, S., H. Lee, N. C. Woo, and J. Kim, 2007: Soil moisture monitoring in a steep relief. Hydrological Processes, in press, 10.1002/hyp.6508

Kim, J., D. Lee, J. Hong, S. Kang, S. J. Kim, S. K. Moon, H. H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B. L. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21, 881-889crossref(new window)

Kirkby, M.J., 1978: Hillslope Hydrology. John Wiley and Sons, 389pp

Kosugi, K., 1994: Three-parameter lognormal distribution model for soil water retain. Water Resources Research 30, 891-901crossref(new window)

Kosugi, K., 1996: Lognormal distribution model of unsaturated soil hydraulic properties. Water Resources Research 32, 2697-2703crossref(new window)

Lim, J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and J. S. Oh, 2003: Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forestry Meteorology 5, 101-109

Ludwig, W., J. L. Probst, and S. Kempe, 1996: Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10, 23-41crossref(new window)

Matsutani, J., T. Tanaka, and M. Tsujimura, 1993: Residence times of soil, ground, and discharge waters in a mountainous headwater basin, central Japan, traced by tritium. Tracers in Hydrology, N. E. Peters, E. Hoehn, Ch. Leibundgut, N. Tase., and D. E. Walling (Eds.), IAHS Publication No. 215, 57-64

McGlynn, B. L., and J. J. McDonnell, 2003: Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research 39(4), 1090, doi:10.1029/2002WR001525crossref(new window)

Meybeck, M., 1982: Carbon, nitrogen, and phosphorus transport by the world rivers. American Journal of Science 282, 401-450

Michel, R. L., and D. L. Naftz, 1995: Use of sulfur-35 and tritium to study runoff from an alpine glacier, Wind River Range, Wyoming. Biogeochemistry of Seasonally Snow-Covered Catchments, K. A. Tonnessen, M. W. Williams, M., Tranter, (Eds.), International Association of Hydrological Sciences. Boulder, CO. Publication No. 228, 441-443

Moon, S. -K., N. C. Woo, and K. S. Lee, 2004: Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology 292, 198-209, doi:10.1016/j.jhydrol.2003.12.030crossref(new window)

Moon, S. -K., Y. Ryu, D. Lee, and J. Kim, 2007: Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram. Korean Journal of Agricultural and Forestry Meteorology, this issue

Moore, T. R., W. Desouza, and J. F. Koprivnijak, 1992: Controls on the sorption of dissolved organic carbon in soils. Soil Science 154, 120-129

Nodvin, S. C., C. T. Driscoll, and G. E. Likens, 1986: Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Science 142, 27-35

Perakis, S. S., and L. O. Hedin, 2002: Nitrogen loss from unpolluted South American forest mainly via dissolved organic compounds. Science 415, 416-419

Pinder, G. F., and J. F. Jones, 1969: Determination of the groundwater component of peak discharge from the chemistry of total runoff water. Water Resources Research 5(2), 438-445crossref(new window)

Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Quere, R. J. Scholes, and D. W. R. Wallace, 2001: The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (Eds), Cambridge University Press, 190pp

Sato, A., and M. Seto, 1999: Relationship between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil. Communications in Soil Science and Plant Analysis 30, 2593-2605crossref(new window)

Schlesinger, W. H., and J. M. Melack 1981: Transport of organic carbon in the world’s rivers. Tellus 33, 172-181

Schulze, E.-D., 2006: Biological control of the terrestrial carbon sink. Biogeosciences 3, 147-166

Shanley, J. B., E. Pendall, C. Kendall, L. R. Stevens, R. L. Nichel, P. J. Phillips, R. M. Forester, D. L. Naftz, B. Liu, L. Stern, B. B. Wolfe, C. P. Chamerlain, S. W. Leavitt, T. H. E. Heaton, B. Mayer, L. D. Cecil, W. B. Lyons, B. G. Katz, J. L. Betancourt, D. M. McKnight, J. D. Blum, T. W. D. Edwards, H. R. House, E. Ito, R. O. Aravena, and J. F. Whelan, 1998: Isotope as indicators of environmental change. Isotope tracers in catchment hydrology, C. Kendall and J. J. McDonnell (Eds.), Elsevier, 761-816

Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp

Sueker, J. K., J. T. Turk, and R. L. Michel, 1999: Use of cosmogenic $^{35}S$ for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range. Geomorphology 27, 61-74crossref(new window)

Suzuki, M., 1980: Evapotranspiration from a small catchment in hilly mountain (I) Seasonal variations in evapotranspiration, rainfall interception and transpiration. Journal of Japanese Forest Society 62, 46-53

Tipping, E., and C. Woof, 1990: Humic substances in acid organic soils: Modeling their release to the soil solution in terms of humic charge. Journal of Soil Science 41, 573-585crossref(new window)

Wagai, R., and P. Sollins, 2002: Biodegradation and regeneration of water-soluble organic carbon in a forest soil: leaching column study. Biology and Fertility of Soils 35, 18-26crossref(new window)

Warnken, K. W., and P. H. Santschi, 2004: Giogeochemical behavior of oganic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. Science of the Total Environment 329, 131-144crossref(new window)